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Module 1: Differential Calculus 

Lesson 1 

Rolle’s Theorem, Lagrange’s Mean Value Theorem , Cauchy’s Mean Value 

Theorem 

 

1.1 Introduction 

In this lesson first we will state the Rolle’s theorems, mean value theorems  and 

study some of its applications. 

 

Theorem 1. 1 [Rolle's Theorem]: Let  be continuous on the closed interval 

 and differentiable on the open interval . If , then there 

exists at least one number  in  such that . 

 

Proof: Assume . If  and , then we 

consider  instead of . Since  is continuous on  it attains 

its bounds: Let  and  be both maximum and minimum of  on . If 

, then  is throughout i.e.,  is constant on 

 for all  in . Thus  at least one  such that . 

Suppose . If  varies on  then there are points where  

or points where Without loss of generality assume  and the 
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

function takes the maximum value at , so that . It is to be noted 

that if , , which is a contradiction. Now as  

is the maximum value of the function, it follows that , 

both when  and . 

Hence,  

 
when   

  

 

when . Since it is given that the derivative at  exists, we get 

 when  and  when . Combining the two 

inequalities we have, . 

Note: Rolle’s theorem shows that b/w any two zero’s of a function  there 

exists at least one zero o   i.e.,  clearly  is continous on [-1,1] 

Example 1: Verify the Roll's theorem for  . 
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

Solution:  

(i) , (ii)  is differentiable on , so all conditions of 

Roll's theorems are satisfying. Hence  implies  and 

 . 

Example 2:   in . 

Solution: 

 ,  is continuous. But  is not differentiable at . 

Note that , for which  is differentiable. As , for  

and , for . 

Example 3: Show that the equation , has only one real root 

Solution: 

 is an odd degree polynomial, hence it has at least one 

real root as complex roots occurs in pair. 

 

Suppose  two real roots   such that , then on , all 

properties of Roll's theorem satisfied, hence  , such that , 
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

But , a contradiction to 

Rolle’s therorem. Hence the equation has only one real root. 

 

1.2. Mean Value Theorems 

Theorem 1.2 [Lagrange's Mean Value Theorem]: If a function  is 

continuous on , differentiable , then there exists at least one point , 

 such that . Hence Lagrange's mean 

value theorem can be written as 

 

, where . 

Geometrical Representation: If all points of the arc  there is a tangent line, 

then there is a point  between  and  at which the tangent is parallel to the 

chord connecting the points  and . 

1.2.1 Cauchy's Mean Value Theorem 

Cauchy's mean value theorem, also known as the extended mean value theorem, 

is the more general form of the mean value theorem. 

 

Theorem 1.2 [Cauchy's Mean Value Theorem]: It states that if functions  

and  are both continuous on the closed interval , and differentiable on the 
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

open interval  and  then there exists some , such 

that  

 . 

Note 1: Cauchy's mean value theorem can be used to prove L'Hospital's rule. 

The mean value theorem (Lagrange) is the special case of Cauchy's mean value 

theorem when . 

Note 2: The proof of Cauchy's mean value theorem is based on the same idea as 

the proof of the mean value theorem 

 

1.2.2 Another form of the statement: If  and  are derivable in 

 and  for any , then there exists at least one 

number  such that  

  

Example 4: Write the Cauchy formula for the functions ,  

on . 
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

Solution:  

Clearly  iff 

, .  . Hence  

  

i.e.,  implies , so . 

1.2.3 The Intermediate Value Theorem It states the following: If  is 

continuous on , and  is a number between  and , then there is a 

 such that . 

1.2.4 Applications of the Mean Value Theorem to Geometric properties of 

Functions. 

Let  be a function which is continuous on a closed inteval  and assume  

has a derivative at each point of the open interval . Then we have 

1. (i) If ,  is strictly increasing on . 

2. (ii) If ,  is strictly decreasing on 
. 

3. (iii) If ,  is constant. 
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

Intermediate value Theorem for Derivatives: If  exists for , 

with  then for any number  between  and  there is a 

number  where . 

Application: If  exists with , on any interval then  has a 

differentiable inverse, there. 

Converse of Rolle’s theorem : - (need not true). 

 

Example 1.5 Let  be continuous on  and differentiable . If 

 such that , does it follow that ? 

Solution:  

No: Take for example  on ,  implies . 

But  and . 

Example 1.6 Show that  

 

 

 

 

 

 

 

www.AgriMoon.Com11



Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

Solution:  

Let  on , By mean value theorem , 

But , and , for all . Hence 

. 

 

Example 1.7 Show that  for all . 

Solution:  

Let  on . By mean value theorem = 

 but  for all . Hence the results. 

Questions: Answer the following question. 

1. Verify the truth of  Rolle’s theorem for the functions  

(a) 2( ) 3 2f x x x= − +
 
on [1,2] 

(b) ( ) ( 1)( 2)( 3)f x x x x= − − − on [1,3] 

(c) ( ) sinf x x= on (a) [0, ]π
 

2. The function 3 2( ) 4 4 1f x x x x= + − −
 
has roots 1 and -1. Find the root of the 

derivative ( )f x′  mentioned in Rolle’ s throrem. 

3. Verify  Lagrange’s formula for the function  2( ) 2f x x x= − on [0,1]. 

4. Apply Lagrange theorem and prove the inequalities 

(i) 1xe x≥ +
        

(ii) ln(1 ) ( 0)x x x+ < >  
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem 

(iii) 1( )n n nb a nb b a−− < −
 
for  

  
( )b a>

   
 

5. Using Cauchy’s mean value theorem show that 
0

sinlim 1
x

x
x→

=
 

 

Keywords: Rolle’s Theorem, Lagrange's and Cauchy’s mean value; 

L'Hospital's rule; Intermediate value. 
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Module 1: Differential Calculus 

Lesson 2 

Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion 

 

2.1 Introduction 

In calculus, Taylor's theorem gives us a polynomial which approximates the 

function in terms of the derivatives of the function. Since the derivatives are 

usually easy to compute, there is no difficulty in computing these polynomials.  

 

A simple example of Taylor's theorem is the approximation of the exponential 

function  near .  

  

The precise statement of the Taylor’s theorem is as follows: 

 

Theorem 2.1: If  is an integer and  is a function which is  times 

continuously differentiable on the closed interval  and  times 

differentiable on the open interval , then 
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion 

 

Here, n  denotes the factorial of , and  is a remainder term, denoting the 

difference between the Taylor polynomial of degree n and the original function. 

The remainder term  depends on  and is small if  is close enough to . 

Several expressions are available for it. The Lagrange form is given by  

 

  

                                           where   

If we put , Taylor's formula reduces to Maclaurin's formula. 

where  lies between  and . 

Notes  

• In fact, the mean value theorem is used to prove Taylor's theorem with the 

Lagrange remainder term. 

• The Taylor series of a real function  that is infinitely differentiable in a 

neighborhood of a real number , is the power series of the form  
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion 

• In general, a function need not be equal to its Taylor series, since it is 

possible that the Taylor series does not converge, or that it converges to a 

different function.  

• However, for some functions , one can show that the remainder term 

 approaches zero as  approaches . Those functions can be expressed 

as a Taylor series in a neighbourhood of the point  and are called analytic. 

 

Example 2.1  Show that  

Solution:  

Here , , So  

  

  

. But for  and   
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion 

  

 

Example 2.2 . Find the Taylor series expansion of  

Solution:  

 

  

  

  

for , we have 
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion 

 
Example 2.3 : Find  if  

Ans:  . 

 

Questions: Answer the following questions. 

1. Expand in power of 2−x  of the polynomial 2.55 234 +++− xxxx   

2. Expand in power of 1+x  of the polynomial 1.2 245 ++−+ xxxx   

3. Write Taylor’s formula for the function xy =  when 3.=1,= na   

4. Write the Maclaurin formula for the function xy +1=  when 2.=n   

5. Using the results of above problem, estimate the error of the approximate 

equation 2

8
1

2
111 xxx −+≈+  when 0.2.=x   

6. Write down the Taylor’s expansion for the function xxf sin=)(  about the point 

4
= πa  with 4.=n   

7. Applying Taylor’s theorem with remainder prove that 
2

1<1<
82

1
2 xxxx

++−+  if 

0.>x   

8. Applying Maclaurin’s theorem with remainder expand  

(i)    )(1ln x+  (ii) .)(1 mx+   
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion 

Keywords: Taylor’s Formula, Taylor’s Series, Maclaurin Formula and Series. 
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Module 1: Differential Calculus 

Lesson 3 

Indeterminate forms ; L’Hospital’s Rule 

 

3.1 Introduction  

Consider the following limits  and  

 

In the first limit if we put  we will get  and in the second limit if we 

“plugged” in infinity we get  (recall that as  goes to infinity a polynomial 

will behave in the same fashion that it’s largest power behaves). Both of these 

are called Indeterminate form. 

 

3.1.1 Indeterminate forms 

First limit can be found by the factorizing the numerator cancelling the common 

factor. That is  

           
  

  

          

 

The second limit can be evaluated as:  
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Indeterminate forms ; L’Hospital’s Rule 

  

                                                        
  

 

However what about the following two limits.  and , This 

first is a  indeterminate form, but we can’t factor this one. The second is an  

indeterminate form, but we can’t just factor an  out of the numerator. Does 

there exists some method to evaluate the limits? The answer is yes. By 

(L'Hospital's Rule). 

 

Suppose that we have one of the following cases, 

 

   or  

 

where  can be any real number, infinity or negative infinity. In these cases we 

have, 
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Indeterminate forms ; L’Hospital’s Rule 

Theorem 3.1: Suppose the functions  and  in , satisfy the 

Cauchy Theorem and , then if the ratio  has a limit as 

, there also exists , and . 

Proof.: On the interval  take some point . Applying the Cauchy's 

mean value theorem we have  

  

 
 

where  is a number lies between  and . But it is given that  

and so  

 

    ..................(1) 

 

If , then  , since  lies between  and . Suppose if 

, by (1)  exists and is equal to . Hence  
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Indeterminate forms ; L’Hospital’s Rule 

  

  

 

and, finally, 

 

  

 

Note 3.1: The theorem also holds for the case where the functions  and 

 are not defined at , but . We can 

make them to be continuous at  by redefine , 

, since  does not depend on whether the 

function  and  are defined at . 

 

Note 3.2: If  and the derivatives  and  satisfy the 

conditions that we imposed by the theorem on the functions  and , 

then applying the L'Hospital rule , and so forth. 
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Indeterminate forms ; L’Hospital’s Rule 

 

Note 3.3: If , but , then the theorem is applicable to the 

reciprocal ratio , which tends to zero as . Hence, the ratio  tends to 

infinity. 

 

Example 3.1:  

 

. 

 

Note 3.4: The L'Hospital rule is also applicable if  and 

. 

 

Put , we see that  as  and therefore , and 

. Applying the L'Hospital rule to the ratio 

 

, we find that 
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Indeterminate forms ; L’Hospital’s Rule 

 

  

  

which proves the results. 

 

We also stated in earlier that if both  and  approaching infinity as 

 (or , the L'Hospital rule is also applied. 

Example 3.2: Find  (   

Solution:  

Taking derivative both numerator and denominator five times we obtain: Ans: 3 

 

Other Indeterminate forms : 

The other indeterminate forms reduce to the following cases. (a)  (b)  (c) 

 (d)  (e) . 
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Indeterminate forms ; L’Hospital’s Rule 

(a) Let , , it is required to find 

, 

i.e. the indeterminate form . Now  

 

 

or   If &  

which is ( )- form or one can write  

  

( )- form 

 

Example 3.3  
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Indeterminate forms ; L’Hospital’s Rule 

b) Let , , it is required to find 

. Put . Taking logarithms of both sides of it, we 

have  

 

  

  

 

(by the continuity of ) and if    . 

Similarly we can find the Indeterminate form  

Example 3.4:   Solution: Put ,  

 

  

          

So . 

Example 3.5: Find the  

Ans: 1 
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Indeterminate forms ; L’Hospital’s Rule 

 

Example 3.6  Using Taylor's formula compute  

 

Ans: 1 

 

Questions: Answer the following questions. 

Evaluate the following limits : 

1.                

2.     

3.                         

4.                     

5.                       

6.                  

7.                      

www.AgriMoon.Com28



Indeterminate forms ; L’Hospital’s Rule 

8.                      

 

Ans.: 1. 1, 2. -2, 3. Limit does not exist, 4. 2, 5. 0, 6. , 7.  & 8. 1 

 

Keywords: Indeterminate forms ; L’Hospital’s Rule. 
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Module 1: Differential Calculus 

Lesson 4 

Limit, Continuity of Functions of Two Variables 

 

4.1 Introduction 

So far we have studied functions of a single (independent) variables. Many 

familiar quantities, however, are functions of two or more variables. For 

instance, the work done by the force  and the volume of the rigid 

circular cylinder ( ) are both functions of two variables. The volume of 

a rectangular solid ( ) a function of three variables. The notation for a 

function of two or more variables is similar to that for a function of single 

variable. 

 

Example 4.1:  (two variables) 

 

Example 4.2:  (three variable) 

A function  of two variables is a rule that assigns a real number  to 

each ordered pair  of real numbers in the domain of . The range of  is 

the set of all values of the function: where . 
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Limit, Continuity of Functions of Two Variables 

In concrete terms: A function  is usually just a formula involving the 

two variables  and . For every  and  we put in, we get a number  out. The 

set of all  we allowed to put into the function is called the domain of the 

function. Usually the domain is unspecified, and then the domain is the set of all 

 we can put into the formula for  and not get square roots of negatives, or 

division by zero, or some such. i.e.,the domain is usually the set of all  we 

can put into the function without getting an undefined expression. 

This is the natural domain. The range is simply all the numbers  we can “hit” 

by putting all  from the domain into the function. 

 

Example: 4.3: Let . The domain is the disk of radius 

7, centre at origin. Now  will be bigger if  ar each smaller. So 

 is biggest when . This is . Now the smallest value 

can achieve is 0, when  (which happens, for example when 

 and ). If ,  could not be defined. Hence the 

range is [0,7]. 
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Limit, Continuity of Functions of Two Variables 

Definition. The graph of a function  of two variables is the set  

  

where  is the domain of . That is, the graph is the surface  in 3-

dimensinal Euclidean Space . 

 

4.1.1 A contour curves or level curves 

A contour curve for a function  is a trace of the surface  

parallel to the -plane. That is, let  for some number , and plot 

 in the -plane. 

 

The domain of a function of two variables , which is denoted  from 

now onwards is the set of all points  in the -plane for which  is 

defined. For example,  means that  is the set of points 

 such that  is greater than . 

 

Example 4.4.  Determine the domain of  
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Limit, Continuity of Functions of Two Variables 

Solution:  

Since the argument of  must be positive, the domain of  is the set of 

points  for which the denominator is not equal to 0. However,  

means that . In set notation this is written as . 

 

Most of the sets in the -plane we encounter will be bounded by a closed 

curve. 

 

As a result, we define an open region to be the set of all points inside of but not 

including a closed curve, and we define a closed region to be the set of all 

points inside of and including a closed curve. 

 

Equivalently, a point  is said to be a boundary point of a set S if any circle 

centered at  contains both points inside of and outside of S, and 

correspondingly, a set S is open if it contains none of its boundary points and 

closed if it contains all of its boundary points. 

 

Example 4.5. Determine if the domain of the following function is open or 

closed.  
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Limit, Continuity of Functions of Two Variables 

Solution:  

To begin with, the quantity cannot be negative since it is under the 

square root. Thus, the domain of  is the set of points that satisfy  

 or . 

That is, the domain is the set of points  inside and on the circle of radius 3 

centered at the origin, which we write as . 

 

Moreover, the domain is a closed region of the -plane since it contains the 

boundary circle of radius 3 centered at the origin. 

 

We say that a region S is connected if any two points in  can be joined by a 

curve which is contained in S: 

 

4.1.2 Functions of Space and Time 

Functions of two variables are important for reasons other than that their graph 

is a surface. In particular, a function of the form u(x,t) is often interpreted to be 

a function of  x at a given point in time. For example, let's place an xy-

coordinate system on a violin whose strings have a length of l, If  u(x,t) is 

considered the displacement of a string above or below a horizontal line at a 

point  and at a time , then y = u(x,t) is the shape of the string at a fixed time t. 
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Limit, Continuity of Functions of Two Variables 

 

Likewise, u (x, t) might represent the temperature at a distance xfrom one end of 

the rod at time . 

4.1.3 Limits and Continuity 

Now we will extend the properties of limits and continuity from the familiar 

function of one variable to the new territory of functions of two or more 

variables. 

Let us recall limit of function of single variable: Let  be a function defined on 

an open interval containing  (except possible at ) and let  be a real number. 

The statement  means that for given , there exists a  

such that , whenever . 

 

In less formal language this means that, if the limit holds, then  gets closer 

and closer to  as  gets closer and closer to . 

 

Consider the following limits.  

 
 

Good job if you saw this as “limit does not exist” indicating a vertical 

asymptote at .  
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Limit, Continuity of Functions of Two Variables 

 

 
 

This limit is indeterminate. With some algebraic manipulation, the zero factors 

could cancel and reveal a real number as a limit. In this case, factoring leads 

to……  

 

 
 

 
 

The limit exists as  approaches 2 even though the function does not exist. In 

the first case, zero in the denominator led to a vertical asymptote; in the second 

case the zeros cancelled out and the limit reveals a hole in the graph at . 

 

The concept of limits in two dimensions can now be extended to functions of 

two variables. 

 

Definition 4.1 Let f be a function of two variables defined on an open disc 

centered at  i.e.,  , except polssible 

at  , and let L be the real numbers Then 
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Limit, Continuity of Functions of Two Variables 

 

  if given   such that 

  whenever < .  

 

Graphically for any point  in the disc with radius , the value 

 lies between  and . 

 

Example 4.6  Let . 

For the limit of this function to exist at (-1,3), values of  must get closer to 13 

as points  on the -plane get closer and closer to (-1,3). 

. For proof we have to go back to epsilon and delta. 

 

Example 4.7 Verifying the limit by definition   

Solution:  

We have to show that  whenever . Now 

. Let . 
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Limit, Continuity of Functions of Two Variables 

Example 4.8. Show that . 

 

Solution:  

Now  

 

 

Put , whenever . 

 

Example 4.9.  

 

Solution:  

To show that , whenever  

 

. 

Now  

. Set . 

 

For a single variable function we have  has two direction i.e.,  
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Limit, Continuity of Functions of Two Variables 

  

But in case of function of two variables the ,  

approaches to  in infinitely many directions. 

 

Example 4.10: Test whether  exists. 

 

Solution:  

Let  on the line . So  

 

 

As depend on , so the limit does not exist. 

 

Example 11: Solution: Let , ,  implies 

. The limit becomes   . 

 

Definition of Continuity of a Function of Two Variables 
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Limit, Continuity of Functions of Two Variables 

A function of two variables is continuous at a point  in an open region  if 

 is equal to the limit of  as  approaches . In limit 

notation:  

  

 

Give Definition  

The function  is continuous in the open region  if  is continuous at every 

point in . 

 

The following results are presented without proof. As was the case in functions 

of one variable, continuity is “user friendly”. In other words, if  is a real 

number and  and  are continuous functions at  then the functions below 

are also continuous at :  
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Limit, Continuity of Functions of Two Variables 

 

The conclusions indicate that arithmetic combinations of continuous functions 

are also continuous —that polynomial and rational functions are continuous on 

their domains. 

 

Finally, the following result asserts that the composition of continuous functions 

are also continuous. If  is continuous at  and  is continuous at , 

then the composition function  is continuous at  

and  

 

  

 

Example 4.12 Find the limit and discuss the continuity of the function 

 

 

Solution:  

. The function will be continuous when 

. 

 

Example 4.13.  Using  and  show that the function  is 

continuous at origin. 
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Limit, Continuity of Functions of Two Variables 

 

Solution:  

Set  and  (  is fixed). Then 

. Take . 

 

Example 4.14. Is it possible to define  at  so that  is 

continuous? 

 

Solution:  

Note that  

  

 

  

 

where  and . If we define ,  is continuous 

every where. 
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Limit, Continuity of Functions of Two Variables 

Example 4.15. Show that the function  is continuous if we define 

. 

 

Solution:  

Discontinuity possible only at . Note with  and , from 

 for small  , that ; hence limit at  exists and is 

0. 

 

Property 1: If a function  is defined and continuous in a closed and 

bounded domain , then there will be at least one point  in  such that  

  

 
 

And at least one point  such that  
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Limit, Continuity of Functions of Two Variables 

We call  as the maximum value of the function and 

 is the minimum value of the function. This result states that a 

function which is continuous on a closed and bounded domain  has a 

maximum and minimum. 

 

Property 2: If  has both maximum and minimum  and  respectively, 

let , then   such that . 

Corollary to property 2. 

If a function  is continuous in a closed and bounded domain  and 

assumes both positive and negative values, then there will be a point inside the 

domain at which the  vanishes. 

 

Questions: Answer the following questions. 

1. Find  , if it exists. 

2. Show that  

3. Prove that .  

4. Find  
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Limit, Continuity of Functions of Two Variables 

5. Find , if it exists. 

6. Test for continuity     

7. Find the  and discuss the continuity of  the 

function   at . 

8. Find the   

and discuss the continuity of the function  at .  

 

Example 1: Let  for  and  for 

. Is it continuous at  or can we make continuous by 

redefining ? (Hint: not possible) 

 

Example 2: Is it possible to extend  to the origin so that the 

resulting function is continuous? (Hint: not possible) 

 

Keywords: Limit, Continuity, Maximum and Minimum values. 
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Module 1: Differential Calculus 

Lesson 5 

Partial and Total Derivatives 

 

5.1 Introduction 

Let , we denote  as the partial derivative of  with respect to  and 

define as  

 

and similarly              

 

Example 5.1: Given , find the partial derivative of  and  

Solution: 

, . 

The partial derivatives of a function of any number of variables are determined 

similarly. Thus if   
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Partial and total derivatives 

  

 

Informally, we say that the values of  and  at the point  denote 

the slope of the surface in the - and -directions, respectively. 

 

Example 5.2: Find the slopes of the surface given by  

at the point  in the -direction and the -direction. 

 

Solution:  

  

 

  

 

5.1.2 Differentiability for Functions of Two Variables 

We begin by reviewing the concept of differentiation for functions of one 

variable. We define the derivative in case of function of single variable. 

 

Let  and let  be an interior point of . Then  is differentiable at 

 means  
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Partial and total derivatives 

 
 

or equivalently  

 
 

exists. The number  is called the derivative of  at . 

 

Geometrically the derivative of a function at  is interpreted as the slope of the 

tangent line to the graph of  at the point . 

 

Extending the definition of differentiability in its present form to functions of 

two variables is not possible because the definition involves division and 

dividing by a vector or by a point in two dimensional space is not possible. To 

carry out the extension, an equivalent definition is developed that involves 

division by a distance. The limit statement can be rewritten as  

 

  

  

 

So the following definition is equivalent to the original one. 
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Partial and total derivatives 

 

Let  and let  be an interior point of . Then  is differentiable at 

 means there is a number, , such that 

 

  

 

One way to interpret this expression is that  tends 

to 0 faster than  and consequently  is approximately equal to 

. The equation  is the equation of 

the line tangent to the graph of  at the point . So  is 

approximated very well by its tangent line. This observation is the bases for 

linear approximation. 

 

Using this form of the definition as a model it is possible to construct a 

definition of differentiability for functions of two variables. 
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Partial and total derivatives 

Definition 5.1. Let  and let  be an interior point of . 

Then f is differentiable at  means there are two numbers, 

 and  such that  

 

  

 
The vector  

 

  ,   

                                        or  

  

 

is called the derivative of  at the point . Interpret this definition as 

requiring that the graph of  has a tangent plane at the point . 

In fact it is easy to get an equation for this tangent plane. It is 

. In 

, the same symbol  is use for two different purposes. First 
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as a subscript where it denotes the variable of differentiation and second as the 

first coordinate of a point in . Strictly speaking such a dual use of one symbol 

is improper, but this is so common as to be acceptable. In the general case, the 

derivative is a vector in  space and it is computed by computing all of the first 

order partial derivatives. As in the case of functions of one variable, 

differentiability implies continuity. 

 

For functions of one variable if the derivative, , can be computed, then  is 

differentiable at . The corresponding assertion for functions of two variables is 

false, as we know existence of partial derivative does not mean the function of 

two variable is continuous. We might suspect that if  is continuous at  

and the first order partial derivatives exist there, then  is differentiable at 

 but that conjecture is false as the following example shows. 

 

Example 5.1. Let  if  and . 

Solution:  

So if  were differentiable at (0, 0),we would have that 

 as  and . That is 
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. But if the limit is computed along the path , we 

get . 

The natural question to ask then is under what conditions can we conclude that 

 is differentiable at . The answer is contained in the following theorem. 

 

Theorem 5.1. Let  and let  be an interior point of . Suppose 

all of the first order partial derivatives of  exist in a open disk about 

  and are continuous at . Then is differentiable at . 

 

Example 5.2.  Show that the function  is differentiable 

everywhere in its domain. 

 

Solution:  

The domain of  is all of  except for the origin. We shall show that  has 

continuous partial derivatives everywhere in its domain (that is, the function  

is in ). The partial derivatives are  and . Since each of  

and  is the quotient of continuous functions, the partial derivatives are 
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Partial and total derivatives 

continuous everywhere except the origin (where the denominators are zero). 

Thus,  is differentiable everywhere in its domain. 

We know that if a function is differentiable at a point, it has partial derivatives 

there. Therefore, if any of the partial derivatives fail to exist, then the function 

cannot be differentiable. This is what happens in the following example. 

 

Example 5.3:  Consider the function . Is it differentiable at 

the origin. 

 

Solution:  

Let us find the partial derivatives if they exist at . Now  

 

  

  

 

Since the limit does not exit so  does not exit. Similarly we can show 

also  does not exist. Thus  cannot be differentiable at the origin. 
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In Example 5.3 the partial derivatives  and  did not exist at the origin and 

this was sufficient to establish non differentiability there. 

 

In the following example even if   both of the partial derivatives,  and 

, exist  is not differentiable at (0, 0). 

Example 5.4: Consider the function . Show that the partial 

derivatives  and  exist, but that  is not differentiable at (0, 0). 

 

Solution:  

Now   

  

and similarly . Suppose the function is differentiable at (0,0),  

i.e.,   

That is  
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If this limit exists, we get the same value no matter how  and  approach 0. 

Suppose we take . Then the limit becomes  

  

  

 

But this limit does not exist, since small values for  will make the fraction 

arbitrarily large. Thus, this function is not differentiable at the origin, even 

though the partial derivatives  and  exist. 

 

In summary if a function is differentiable at point, then it is continuous there. 

Having both partial derivatives at a point does not guarantee that a function is 

continuous there. 

 

Theorem 5.1 :  
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Here subscript 1 and 2 denote the partial derivative with respect to its first and 

second argument, respectively. The proof is given in Lesson 7. 

 

5.1.2 Total Differential 

Definition 5.2 (Total Differential) For a function of two variables,  

if  and  are given increments and, then the corresponding increment of  is  

 
The differentials  and  are independent variables; that is, they can be given 

any values. Then the differential , also called the total differential, is defined 

by 

  

Example 5.5:  If , find the differential . 

Further, if  changes from 2 to 2.05 and  changes from 3 to 2.96, compare the 

values of  and . Which is easier to compute  or ? 

Solution:  

By definition,  
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Putting , , , and , we get  

  

The increment of  is    

  

  

Notice that  but  is easier to compute. 

5.2 Total derivative: In the mathematical field of differential calculus, the term 

total derivative has a number of closely related meanings. 

 

The total derivative of a function, , of several variables, e.g., , , , etc., with 

respect to one of its input variables, e.g., , is different from the partial 

derivative. Calculation of the total derivative of  with respect to  does not 

assume that the other arguments are constant while  varies; instead, it allows 

the other arguments to depend on . The total derivative adds in these indirect 
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dependencies to find the overall dependency of  on . For example, the total 

derivative of  with respect to  is  

  

 

Consider multiplying both sides of the equation by the differential  . 

The result will be the differential change  in the function . Because  

depends on , some of that change will be due to the partial derivative of  with 

respect to . However, some of that change will also be due to the partial 

derivatives of  with respect to the variables  and . So, the differential is 

applied to the total derivatives of  and  to find differentials  and , which 

can then be used to find the contribution to . 

 

Example 5. 6: Find the total derivative of ,  

Solution: 

 , , . 
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Questions: Answer the following questions. 

1. Test the differentiability of    

2.  Find the total differential of    

3.   

4.  Find  at  where  
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Module 1: Differential Calculus 

Lesson 6 

Homogeneous Functions, Euler's Theorem 

 

6.1 Introduction  

A polynomial in  and  is said to be homogeneous if all its terms are of same 

degree. For example,  

  

is homogeneous. It is easy to generalize the property so that functions not 

polynomials can have this property. 

 

Definition 6.1 

A function  is homogeneous of degree  in a region D iff, for  

and for every positive value , . The number  is +ve, -

ve, or zero and need not be an integer. 

 

Example 6.1  . Here ;  is any quadrant 

without the axes.  

 

Example 6.2   
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This function is homogeneous of degree 0;  is first and third quadrant without 

the axes. 

 

Example 6.3  . 

This function is not homogeneous. 

 

Theorem 6.1 [Euler's Theorem] Let  is a homogeneous function of 

degree  in  (region) and  and  are continuous in . Then  

  

for all . 

Proof. Now differentiate  partially with respect to , we 

obtain  

Chain rule :  

Finally set . 

Example 6.4 If . Then show that  
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Proof.   Let . 

 is not homogeneous function , but  is 

 

 is homogeneous function of degree .Therefore  

  

But   ,  

Hence  

       .............................  

Differentiating  partially w.r.t.  , we have 

 

       ..................(6.2) 
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Homogeneous Functions, Euler's Theorem 

Differentiating  partially w.r.t.  , we have 

 

       ..................(6.3) 

Multiplying  by  ,  by  and adding, we have 

 

 

 

 
 

Example 6.5  If . Then find 
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Homogeneous Functions, Euler's Theorem 

Ans.: ). 

 

Example 6.6  (1) If  , show that  . 

Solution:  

Here  is not a homogenous function but  is a homogenous 

fucntion of degree 2 

i.e.,   

or   

(2) If  show that  . 

Solution: 

   is not homogenous function, but  is a homogenous function of degree 3 in 

 . 

By Euler’s theorem, we have   
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                                                i.e.,  

 

Questions: Answer the following questions. 

1. If  , show that   

2.  If  , show that   

3.  If  , prove that  

4.  If  , then find the value of   
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Module 1: Differential Calculus 
 

Lesson 7 

Composite and Implicit Functions for Two Variables 

 

7.1 Introduction 

The chain rule works for functions of more than one variable. Consider the 

function  where  and , and  and  are 

differentiable with respect to , then  

 

  

 

Suppose that each argument of  is a two-variable function such that 

 and , and that these functions are all differentiable. 

Then the chain rule would look like:  

 

  

 

  

 

If we consider  above as a vector function, we can use vector notation 

to write the above equivalently as the dot product of the gradient of  and a 

derivative of :  

 

  

 

Partial and Total Increment: We consider a function , increase the 

independent variable  by  (keeping  fixed), then  will be increased: this 
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Composite and Implicit Functions (Chain Rule) for Two Variables 

increase is called the partial increment with respect to  which we denote as 

, so that  

 

  

 

Similarly we define . If we increase the argument  by  and  by , we 

get  a new increment , which is called the total increment of  and defined 

by  

 

  

 

It is noted that total increment is not equal to the sum of the partial increments, 

. Let us assume that  has continuous partial derivatives 

at the point  under consideration. Express  in terms of partial 

derivatives. To do this we have  

 

  

 

  

 

and using Lagrange mean value theorem separately  

 

  

 

(where  lies between  and  and  between  and ). As partial 

derivatives are continuous it follows that  
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Composite and Implicit Functions (Chain Rule) for Two Variables 

  

 

Where the quantities  and  approach zero as  and  

approach zero. 

 

Now we will derive the total differential of composite function. 

 

Theorem 7.1:  

 

  

 

  

 

We use this formula for the composite function 

  

 

  

 

  

 

Example 7.1:      
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Composite and Implicit Functions (Chain Rule) for Two Variables 

We can generalize this results. If  is a function of four 

arguments  and each of them depends on  and , then  

 

  

  

 . 

  

If a function , where , ,  depend on a single independent 

variables : , , , then  is actually a function of one 

variable  only. 

 

Hence,  

  

 

  

 

  

 

  

 

This formula is known as the formula for calculating the total derivative  (in 

contrast to the partial derivative ). 

 

Example 7.2: Find  and  of , , . 

Solution:  
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Composite and Implicit Functions (Chain Rule) for Two Variables 

  

 

  

 

, , , , , . 

 

So  

  

 

  

 

  

 

  

 

In these expressions, we have to substitute  and  for  and  

respectively. 

 

Example 7.3:  Find the total derivative of ,  

 

Solution:  

, , . 

 

  

 

www.AgriMoon.Com73



Composite and Implicit Functions (Chain Rule) for Two Variables 

  

 

  

 

7.1.1 Let us find the the total differential of the composite function  

and  and , we know the total differential  

 

  

 

Now substitute the expression  and  defined in the above composite 

function, after simplification we obtain  

 

  

 

Where  and  

 

Example 7.4: Find the total differential of the composite function , 

, . 

 

Solution:  
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Composite and Implicit Functions (Chain Rule) for Two Variables 

 
 

  

 

  

 

  

 

  

 

7.2 Composite and implicitly Functions:  

Let some function  of  be defined by the equation . We shall 

prove the following theorem. 

 

Theorem 7.2 Let a function  of  be defined implicitly by the equation  

  

where , ,  are continuous in the domain  containing the point 

, which satisfies (7.1), also  at the point . Then  

  

Proof. Given  is a function of two variables , and  and  is again a 

function of  so that  is a composite function of . Its derivative with respect 

to  is  
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Composite and Implicit Functions (Chain Rule) for Two Variables 

 

As  is considered as a function of  alone, which is identically zero. So we 

have  

 

  

which implies  

 

Example 7.5: An equation is given that connects  and   

  

 find . 

 

Solution: 

, , , by the above theorem 

we obtain . 

 

Questions: Answer the following questions. 

1. Find  at  where 

. 

2. If , 

, then show that 

3. . 

4. Find  , when 

. 
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5. Find  , when ,  any 

constant, . 

 

Keywords: Chain Rule, Composite Function 

 

References 

W. Thomas, Finny (1998). Calculus and Analytic Geometry, 6th Edition, 

Publishers, Narsa, India.  

Jain, R. K. and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd 

Edition Publishers, Narsa, India.  

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.   

Piskunov,  N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, 

CBS, India. 

 

Suggested Readings 

Tom M. Apostol (2003). Calculus, Volume II Second Editions, Publishers,John 

Willey & Sons, Singapore. 

www.AgriMoon.Com77



Module 1: Differential Calculus 

Lesson  8 

Derivative of Higher Order 

 

8.1 Introduction  

Derivative of higher order of composite function may be computed by the 

principles given in Lesson 7. As an example, let us compute three drivatives of 

order two for the function  We assume that three 

functions along with partial derivatives are continous upto order 3.  First let us 

consider the higher order partial derivatives. 

 

8.1.1 For  , we assume that the three fucntions  

 

. 

  ,    

 

Differentiating again, remember that   are themselves composite 

functions. 
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We omit the arguments in these fucntions to have space. If we admit that  

 

 then it is easily shown that  . 

 

8.1.1 Higher-order partial derivatives As is true for ordinary derivatives, it is 

possible to take second, third, and higher order partial derivatives of a function 

of several variables, provided such derivatives exist.  

 

  

 

  

 

It is not true in general  

 

Example 8.1 Let ; for  and . 

 

Solution:  

We have  
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Hence  

  

  

  

  

  

  

So  
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Derivative of Higher Order 

  

i.e., . 

 

8.1.2 Partial Derivatives of Higher Order (Equality of  and ).  

If  possesses continuous second order partial derivatives  and , 

then  

  

 

Note:  Existence of partial derivatives does not ensure continuity of a function. 

 

Example 8.2  Let ; for  and . 

Solution:  

  

 

  

 

But  is discontinuous at . 
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Derivative of Higher Order 

 

Example 8.3 If , show that  

 

Solution:  

  

 

  

i.e., . 

 

Example 8.4  If , show that  

 

Solution: We have  and . Now 

. 

So  
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Derivative of Higher Order 

Example 8.5 Let , where  and  are assumed 

to have continuous second partial derivatives, show that . 

 

Solution:  

 

  

 . 

 

Questions: Answer the following questions. 

1. For  , find  ,  

2. Find  , if  by not eleminating  and 

. 

3. Show that the functions )(= 22 yxz −φ , where )(uφ  is a differentiable function, 

satisfies the relationship 0=
y
zx

x
zy

∂
∂

+
∂
∂ . 

4.  Find the derivatives 
dx
dy  of the functions represented implicitly  

3
2

3
2

3
2

2 = )(  = )(  0= )(  0=)(sin )( ayxivxyiiieyexeiiyxexyi yxxyxyxy +−+−−   

5.  If )()(= yxyyxxr +++ ψφ , show that  

www.AgriMoon.Com83



Derivative of Higher Order 

 0.=2 2

22

2

2

y
r

yx
r

x
r

∂
∂

+
∂∂

∂
−

∂
∂  

(φ  and ψ  are twice differentiable function.)   

6.  If )]()([1= yaxyax
y

u −++ φφ , show that  

 .= 2
2

2

2

2









∂
∂

∂
∂

⋅
∂
∂

y
uy

yy
a

x
u  
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Module 1: Differential Calculus 

Lesson 9 

Taylor's expansion for function of two variables 

 

9.1 Introduction  

Let  which is continuous, together with all its partial derivatives up 

to -th order inclusive, in some neighborhood of a point . Then like 

a function of single variable we can represent  as sum of an -th degree 

polynomial in power of  and  and some remainder. We consider 

here in case  and show that  has of the form  

 

 
where  are independent of  and , and  is the remainder, and 

it is very similar to function of single variable. 

 

Let us apply the Taylor formula for function  of the variable  assuming 

 to be constant.  
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where , . We expand the functions , 

,  in a Taylor's series in powers of   

 

 
where ,   

 

 
where ,   

 
where , . Substituting expression (3), (4) and (5) 

into formula (2), we get  
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Taylor's Expansion for Function of Two Variables 

  

  

  

  

 

arranging the numbers as given in (1), we have  

  

  

  

 

  

 

This is the Taylor's formula for . The expression  
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Taylor's Expansion for Function of Two Variables 

 

  

 

This is called the remainder. If we denote , , and 

,  becomes  

  

  

 

Example 9.1: Find the remainder  of the function given by  

  

 

Solution:  

  

  

Where  is given by  
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Taylor's Expansion for Function of Two Variables 

 

  

  

  

  

  

  

  

  

 

Questions: Answer the following question. 

1. Expand yxz sinsin=  in powers of )
4

( π
−x  and )

4
( π
−y . Find the terms of    

the first and second orders and 2R  (the remainder of second order).  

2. Let yeyxf x sin=),( . Expand ),( kyhxf ++  in powers of h  and k  and  also find  

2R .  
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Taylor's Expansion for Function of Two Variables 

3. Expand 
xeyyx ++ sin2
 in powers of 1)( −x  and )( π−y  through quadratic terms 

and write the remainder.  

4. Expand 23 2xyx −  in Taylor’s Theorem about 1=a , 1= −b .  

5. Show that for 1<<0 θ ,         

.)](cos)(3)(sin)3[(
6
1=sin 33222233 xaax eybybybxaybxyabxaabxybybye θθθ −+−++

 

 

Keywords: Taylor’s  polynomial
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Module 1: Differential Calculus 

Lesson 10 

Maximum and Minimum of function of two variables 

 

10.1 Introduction  

We say that a function  has a maximum (local) at a point  if  

  

for all points  sufficiently close to the point . 

 

A function of two variables has a absolute maximum (global maximum) at a 

point  if  for all points  on the domain of the 

function. 

 

Analogously we say that a function  has a minimum (local) at a 

point  if  

  

for all points  sufficiently close to the point . Similarly we define 

absolute minimum (global minimum). 
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Maximum and Minimum of Function of Two Variables 

The maximum and minimum of a function are called extrema of the function; 

we say that a function has an extremum of a given point if it has a maximum or 

minimum at the given points. 

 

Example 10.1. The function  contains a minimum 

at . 

Solution: As  for all  and  i.e., 

 

Example 10.2 The function  

Solution:  

For , , . Now for , . 

So , . i.e., ,  is a maximum point 

of . 

Necessary Conditions for an Extremun: If a function  attains an 

extremum at  and , then each first partial derivative  

either vanishes for these values or does not exist. 
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Maximum and Minimum of Function of Two Variables 

This result is not sufficient for investigating the extreme points, but permits 

finding these values for cases in which we are sure of the existence of a 

maximum or minimum. Otherwise more investigation is required. 

 

Example 10.3. Consider the function  

Solution:  

The function has partial derivatives as ,  which vanish at 

 and . But this function has neither maximum nor minimum at 

 and , since it takes both negative and positive values. Points at 

which  (or does not exist)  (or does not exist) are called critical 

points of the function . Thus if a function has an extreme point this 

can occur at the critical point. Converse may not true. 

 

For investigation of a function at critical points, let us establish sufficient 

conditions for the maximum of a function of two variables, which can be 

generalized to functions of more than two variables also. 

 

Theorem 10.1: Let a function  have continuous second partial derivatives on 

an open region containing a point  for which  and . 

Let  
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Maximum and Minimum of Function of Two Variables 

  

or  

    

 

1. If  and , then  has a local minimum at . 

2. If  and , then  has a local maximum at . 

3. If , then  has neither a local minimum nor a local maximum at . 

4. The test is inconclusive if . (Additional investigation is required) 

Proof follows from Taylor's theorem. 

 

Note that if , then  and  must have same sign. This 

means that  can be replaced by . 

 

Example 10.4 Find the extreme point of  
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Maximum and Minimum of Function of Two Variables 

Solution:  

  

solving we obtain . i.e.,  or . So  and 

 are the critical points. , , .  

 

  

 

i.e.,  has neither minimum nor maximum at critical point . Hence  is 

a saddle point. We will consider the critical point   

  

 

and , we conclude that  has a maximum at  

  

References 

W. Thomas, Finny (1998). Calculus and Analytic Geometry, 6th Edition, 

Publishers, Narsa, India.  

www.AgriMoon.Com95



Maximum and Minimum of Function of Two Variables 

Jain, R. K. and Iyengar, SRK. (2010). Advanced Engineering Mathematics,  3 

rd Edition Publishers, Narsa, India.  

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.   

Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, 

CBS, India. 

 

Suggested Readings 

Tom M. Apostol (2003). Calculus, Volume II Second Editions, Publishers,John 

Willey & Sons, Singapore. 

www.AgriMoon.Com96



Module 1: Differential Calculus 

Lesson 11 

Lagrange's Multiplier Rule / Constrained Optimization 

 

11.1 Introduction 

We presents an introduction to optimization problems that involve finding a 

maximum or a minimum value of an objective function  subject to a 

constraint of the form . 

 

Maximum and Minimum. Finding optimum values of the function  

without a constraint is a well known problem in calculus. One would normally use 

the gradient to find critical points (gradient ( ) vanishes). Then check all 

stationary and boundary points to find optimum values. 

 

Example 1.  

 

has a critical/ stationary point at (0,0). 
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Lagrange's Multiplier Rule / Constrained Optimization 

The Hessian: A common method of determining whether or not a function has an 

extreme value at a stationary point is to evaluate the hessian of the function of 

variables at that point. where the hessian is defined as  

  

A square matrix of order n n×  is said to be positive definite if its leading principal 

minors are all positive. 

For =2, we have 

 
 

Second Derivative Test: The Second derivative test determines the optimality of 

stationary point  according to the following rules: 

Let 
2 2 2

2 2, ,f f fA B C
x x y y

∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
,  and 0f f

x y
∂ ∂

= =
∂ ∂

 at the point ( , )x y , then 
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Lagrange's Multiplier Rule / Constrained Optimization 

1. If 0A >  and 2 0AC B− >  at the point 

( , )x y , then f  has a local minimum at ( , )x y . 

2. If 0A <  and 2 0AC B− >  at the point 

( , )x y , then f  has a local maximum at ( , )x y . 

3. If 2 0AC B− <  at ( , )x y , then ( , )x y  is a 

saddle point of .f  

4. If 2 0AC B− = , further investigation is 

required. 

In the above Example 1, 

  

Therefore  has a minimum at (0,0) as  and determinant of the matrix 

is . 

 

11.1.1 Constrained Maximum and Minimum 

When finding the extreme values of  subject to a constraint , the 

stationary points found above will not work. This new problem can be thought of 

as finding extreme values of  when the point  is restricted to lie on the 
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Lagrange's Multiplier Rule / Constrained Optimization 

surface . The value of  is maximized (minimized) when the 

surfaces touch each other,i.e , they have a common tangent for line. 

 

This means that the surfaces, gradient vectors at that point are parallel, hence,  

  

The number  in the equation is known as the Lagrange multiplier. 

 

11.2 Lagrange multiplier method  

The Lagrange multiplier methods solves the constrained optimization problem by 

transforming it into a non-constrained optimization problem of the form:  

 )) 

or . Then finding the gradient and Hessian as was done above will 

determine any optimum values of  . 

 

Suppose we want to find optimum values for the following: 

 

Example 11.2:  subject to . 

Then the Lagrangian method will result in a non-constrained function. 
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Lagrange's Multiplier Rule / Constrained Optimization 

. The gradient for this new function is  

  

  

  

Solving , we obtain ,  and . 

The Hessian matrix at the stationary point 

  

Since the solution ,  minimizes 

 subject to  with  

 

Example 11.3: Find the rectangle of parameter l which has maximum area i.e., 

Maximize  subject to  
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Lagrange's Multiplier Rule / Constrained Optimization 

  

Solution:  

  

  

  

i.e.,     i.e.,    .  

 , so that the rectangule of maximum area is a square. 

 

Example 11.4 Find the shortest distance from the point (1,0) to the parabola 

, i.e., Minimize   subject to . 
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Lagrange's Multiplier Rule / Constrained Optimization 

Now   

If  then , from  

Hence  

 

 

Hence  

i.e.,  

Hence the only solution is  and the required distance is unity. 

 

Questions: Answer the following question 

1. Determine the maximum value of the -th root of a product of numbers 

 provided that their sum is equal to a given number . Thus the 

problem is stated as follows: it is required to find the maximum of the function 

 subject to , , for all . 
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Lagrange's Multiplier Rule / Constrained Optimization 
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Module 1: Differential Calculus 

Lesson 12 

Convexity, Concavity and Points of Inflexion 

 

12.1 Introduction 

In the plane, we consider a curve , which is the graph of a single-

valued differentiable function . 

 

Definition 12.1:  We say that the curve is convex downward bending up on the 

interval  if all points of the curve lie above the tangent at any point on the 

interval. Or when the curve turns anti-clock wise we call it is convex downward 

(concave upward) (see Fig. 1). 

 

 

             

 

 

Fig.1. (Convex downward/Bending up) 

 

Definition: We say that a curve is convex upwards for bending down on the 

interval  if all points of the curve lie below the tangent at any point on the 

interval. Or when the curve turns clock-wise we say it is convex upward 

(concave downward) (see Fig. 2). 
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Convexity, Concavity and Points of Inflexion 

 

 

 

 

 

Fig. 2. (Convex upward / Bending down ) 

 

The curve has a point of inflexion at , at which the curve changes from convex 

upwards to convex downwards and vice-versa. 

 

Theorem 1: If for all points of an interval , , the curve 

 on this interval is convex upward. If , the curve is convex 

downward. 

If   is convex upward on . 

If   is convex doward on . 

 

                    

             P      •                 
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Convexity, Concavity and Points of Inflexion 

Fig. 3. (Inflexion point) 

 

Example 12.1: Find the ranges of values of  for which the curve 

 is convex downwards, convex upwards, and 

also determine the point of inflection. 

 

Solution:  

  

 

 

  

 

Now on the interval , , , hence . If , 

, i.e.,  and . Hence for , . Now on 

the interval , . Hence the curve is convex downward on the interval 

 and . Convex upwards on . The curve has inflection points 

at  and  as  changes sign. At ,  and at , . 

i.e.,  and  are two points of inflection of the curve. 
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Convexity, Concavity and Points of Inflexion 

Example 12.2: Determine the intervals where the graph of the function is 

convex downward and convex upward of  

Solution:  

  

Hence,  

  

Then . For , , , the graph is 

convex downward. For , , , the graph is convex 

upward. There is no inflection point, since  is not defined when . 

 

Example 12.3: Determine the intervals where the graph of the function is 

convex downward and convex upward of , 

Solution:  

, and . So, for 

 and for , , , the graph is convex 

downward. For , , , and the graph is convex upward. 
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Convexity, Concavity and Points of Inflexion 

There is an inflection point at . There is no inflection point at , the 

graph is convex downward for . 

Example 12.4: Find the point of inflection of the curve , 

Solution: 

 , .  if , or . i.e., 

 or . Now  changes sign from negative to positive as  passes 

through 1 and changes sign from positive to negative as  passes through . 

Thus  and  are two points of inflection of the given curve. 

Example 12.5: What conditions must the coefficients  satisfy for the 

curve  to have points of inflection? 

Solution: 

  has a point of inflection iff the equation 

 has different real roots. i.e., discriminant 

 is positive. i.e. . 

 

 

www.AgriMoon.Com109



Convexity, Concavity and Points of Inflexion 

Questions: Answer the following questions. 

1. Determine all the inflexion points of   

2. Determine all the inflexion points of   

3. Determine all the inflexion points of   for  

4. Sketch the curve  . Determine the inflexion points. Compare with   

graph of  . 

5. Determine the inflexion points and the intervals of convex downward /  

bending up and convex upward / bending down for the following curve 

6.       

7.       

8.      

9. Sketch the curve  

10. Pint of inflexion of   . 

Keywords: Convex up, Convex down, Inflexion Point. 
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Module 1: Differential Calculus 

Lesson 13 

Curvature 

 

13.1 Introduction  

Curvature measures the extent to which a curve is not contained in a straight line. 

It curvature measures how curved the curve is. We have heard the comparison of 

bending or curvature of a road at two of its points. The curvature of a straight line 

is zero. It also measures how fast the tangent vector turns as a point moves along 

the curve. 

 

 

 

                                              

                                          

 

                             

Fig.1. 

 

Let  be a fixed point on the curve. Let arc , and arc , so that 

arc . Let ,  be the angles which the tangents at  and  make 

with some fixed line (say - axis).  denotes the angle formed by these tangents. 

The symbol  also denotes the angle through which the tangent turns from  and 

 through a distance .  will be large or small, as compared with , 

depending the degree of the sharpness of the bend. This suggests the following 

definitions: 

 
 

 

          Q 

          P 

           

 
 

 
  

 
 

           

www.AgriMoon.Com112



Curvature 
 

The curvature of the curve at  is defined as . 

The reciprocal of curvature  is the radius of curvature. 

 

Length of Arc as a Function, Derivative of Arc. 

Let  be the equation of a given curve on which we take a fixed point . 

Let  and  be the variable points on the curve with arc 

 and arc  so that arc .  

 

 

 

 

 

 

 

                     

Fig. 2. 

 

  

  

  

  

  

, taking limit  both sides we have  

  

P 
N 

Q 

y∆  

x∆  S 
A 
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Curvature 
 

  

 
 

Radius of Curvature: Cartesian Equations 

We define the absolute value of  as the curvature and denote it by . 

Consider the curve , we note that  and, therefore,  

  

Differentiating this with respect to , we have  

  

As , we have  

  

Hence , where ,  

 

Note: If , the radius of curvature, , is positive or negative according as  

is +ve or -ve i.e., accordingly as the curve is convex downward or convex upward. 

But we consider  is +ve here. Curvature is zero at point of inflection. Since  is 

independent of the choice of -axis and -axis, interchanging  and , we see that 

, is given by  
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Curvature 
 

  

Curvature- parametric Equation 

Given , . .  

  

Hence the curvature    

 

Curvature- polar Equation 

Let  be the given curve in polar co-ordinates. Now its cartesian 

coordinates are of the form , . i.e., , 

. Now  

  

and  

  

  

  

 

substituting the latter expressions in the previous parametric-form, we have  

  

We know  
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Curvature 
 

  

numerator becomes  

  

  

  

  

  

  

  

  

 

To check we can observe that  

  

denominator becomes  

  

  

  

  

  

Hence  
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Curvature 
 

  

The radius of curvature is  

  

 

Example 1: Determine the radius of curvature of the curve   

 

Solution: 

 ,  

 

Hence  

  

* We know  

  

numerator becomes  
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Curvature 
 

  

  

  

  

denominator becomes  

  

  

  

  

  

Hence  

  

 

Example 2: Find the radius of curvature of   

Ans.:  

 

Example : Find the radius of curvature of ,  for ,  

Ans.:  

 

Example : Find the curvature of the hyperbola  at . 

Solution:  
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Curvature 
 

 and . So  

  

When , . 

 

Example 3: For what value of  is the radius of curvature of  smallest? 

 

Solution: 

 ,  and radius of curvature  is . Then  

  

  

  

etting , we find , , . As the second 

derivative at this point is positive,  is the point which gives the smallest 

radius of curvature. 

 

Example 4: Find the radius of curvature at any point on the curves:  

 

Solution: 

  ,   
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Curvature 
 

  

  

  

implies  

  

i.e. . 

 

Example : Find the radius of curvature at the origin of the curve  

  

Solution:  

  

  

  

which implies .  

  

 

Example 5: Find the curvature of the cycloid ,  at 

an arbitrary point . 
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Curvature 
 

 

Solution: 

, , , . Using this 

parametric formula , we obtain  

  

  

  

  

When ,  

 

Questions: Answer the following questions. 
1. Find the curvature of the curve   at the point (a,b) and (a,0) 

2. Find the curvature of the curve  at the point (2,0) 

3. Find the curvatur e of the curve  at the point (3,4)    

 

Questions: Find the radius of curvature of the following curves at the 

indicated points. 

4.  at the point (4,8)            

5.  at the point          

6.  at the point (1,0)          
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Curvature 
 

7.  at the point        

8. Find the point of the curve  at which the radius of curvature is minimum. 

 

Ans.: 1.  , 2.  , 3.  , 4.  , 5.  29, 6.   , 7.  1 & 8.   
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Module 1: Differential Calculus 

Lesson 14 

Asymptotes 

 

14.1 Introduction 

A straight line  is called an asymptote to a curve  (fig.1), if the distance  

distance from a point  of  to  approaches to zero as  recedes to infinity. 

Roughly speaking, a straight line is said to be an asymptote of a curve if it comes 

arbitrary close to that curve (but never touches the curve). 

 

14.1.1 Asymptotes of Functions: If the graph of a function has an asymptote , 

then we say that the function has an asymptote . A function can have more than 

one asymptote. If an asymptote is parallel with the -axis, we call it a vertical 

asymptote. If an asymptote is parallel with the -axis, 

we call it a horizontal asymptote. All other asymptotes are oblique asymptotes. 
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Asymptotes 

 

 

 

 

 

 

 

 

Fig. 1 

 

Vertical Asymptotes 

A straight line  is a vertical asymptote to the the curve  if 

 or . Consequently, to find vertical 

asymptotes one has to find values of  such that when they are approached by 

the function , the latter approaches infinity. Then the straight line is a 

vertical asymptote. 

 

Example 14.1: The curve  has a vertical asymptote , since  as 

. 

 

δ
 

( , )P x y  

d  

M  
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Asymptotes 

Example 14.2: The curve  has infinite number of vertical asymptotes at 

 for  as  when . 

 

Example 14.3: The curve  has no vertical asymptote at  as 

. 

 

14.2 Horizontal Asymptotes 

A line  is a horizontal asymptote of a function  iff  or 

, with . 

 

Examples 14.4: The curve  has horizontal asymptote as 

. So,  is a horizontal asymptote of the function . 

14.3 Oblique Asymptotes/Inclined Asymptotes  

Let the curve  have an inclined or oblique asymptote (fig.1) whose 

equation is . 
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Asymptotes 

 

Here  and  are unknown real numbers to be determined. Let  be the 

perpendicular distance of any point  on the curve to the line . 

Hence, . Now  as . Hence, . i.e., 

, hence  

 

  

 
 

So . 

 

Example 14.5: Find the asymptotes to the curve  

 

Solution:  

When , , and , , hence the straight line  is a 

vertical asymptote of the above curve. 
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Asymptotes 

 

Next to find the asymptotes of the form , i.e., the inclined asymptote.  

  

  

  

  

Hence  is an inclined asymptotes to the given curve. 

 

Example 14.6: Find the oblique asymptotes to the curve  

 

Solution: 

  

 

14.3.1 Tutorial Discussion 

• An asymptote is a straight line which acts as a boundary for the graph of a 

function. 
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Asymptotes 

• When a function has an asymptote (and not all functions have them) the 

function gets closer and closer to the asymptote as the input value to the 

function approaches either a specific value a or positive or negative infinity. 

• The functions most likely to have asymptotes are rational functions 

• Vertical asymptotes occur when the following condition is met: 

 

The denominator of the simplified rational function is equal to 0. 

 

Remember, the simplified rational function has cancelled any factors common to 

both the numerator and denominator. 

e.g., Given the function  

 

The first step is to cancel any factors common to both numerator and denominator. 

In this case there are none. 

 

The second step is to see where the denominator of the simplified function equals 

0.  implies . 

 

The vertical line  is the only vertical asymptote for the function. As the 

input value  to this function gets closer and closer to -1 the function itself looks 

and acts more and more like the vertical line . 

www.AgriMoon.Com128



Asymptotes 

 

Example 14.7   

First simplify the function. Factor both numerator and denominator and cancel any 

common factors.  

  

 

The asymptote(s) occur where the simplified denominator equals 0. i.e., . 

The vertical line  is the only vertical asymptote for this function. As the input 

value  to this function gets closer and closer to 3 the function itself looks more 

and more like the vertical line . 

 

Example 14.8  If  

Factor both the numerator and denominator and cancel any common factors. 

In this case there are no common factors to cancel.  
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Asymptotes 

The denominator equals zero whenever either  or . Hence this 

function has two vertical asymptotes, one at  and the other at . 

 

5. Horizontal Asymptotes 

 

Horizontal asymptotes occur when either one of the following conditions is met 

(you should notice that both conditions cannot be true for the same function). 

• The degree of the numerator is less than the degree of the denominator. In this 

case the asymptote is the horizontal line . 

• The degree of the numerator is equal to the degree of the denominator. In this 

case the asymptote is the horizontal line  where  is the leading 

coefficient in the numerator and  is the leading coefficient in the denominator. 

 

When the degree of the numerator is greater than the degree of the denominator 

there is no horizontal asymptote. 

 

Example 14.9  

then there is a horizontal asymptote at the line  because the degree of the 

numerator 2  is less than the degree of the denominator 3. 
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Asymptotes 

This means that as  gets larger and larger in both the positive and negative 

directions ( ) and ( ) the function itself looks more and more like the 

horizontal line  

 

Find the vertical asymptotes, horizontal asymptotes and inclined asymptotes for 

each of the following functions Problems: 

Exercises: 

Find the asymptotes of the following curves: 

 1.  

  Solution: Vertical:  Horizontal:  Inclined: none 

 2.  

 Solution: Vertical:  Horizontal: none Inclined:  

3.                                             Ans.  

4.                                       Ans.  
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Asymptotes 

5.                                       Ans. No asymptotes 

6.                                 Ans.                                                           

7.                                            Ans.                                                 

8. Sketch the function   

 

Keywords: Asymptotes, horizantal, vertical and inclied asymptotes. 
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Module 1: Differential Calculus 

Lesson 15 

Tracing of Curves 

 

15.1 Introduction 

Now we use some mathematical techniques to trace curves and graphs of 

functions much more efficiently. We shall especially look for the following 

aspects of the curve. 

1. Intersection with the coordinate axes. 

2. Critical points 

3. Regions of increase 

4. Regions of decrease 

5. Maxima and minima (including local ones) 

6. Behaviour as x becomes large positive and large negative. 

7. Values of x near which y becomes large positive or large negative. 

8. Regions where the curve is convex up or down. 

9. Asymptotes of the curve 

10. Find whether the curve is symmetric 

 

15.2 Behaviour as x becomes very Large 

Suppose we have a function f defined for all sufficiently larger numbers. Then 

we get substantial information concerning our function by investigating how it 

behaves as x becomes large. 

 

For example, sin x oscillates between -1 and +1 no matter how large x is.   
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Tracing of Curves 

However, polynomials do not oscillate. When f(x) = x2 as x becomes large 

positive. So does x2. Similarly with the function x3, or x4 (etc.). We consider this 

systematically.    

 

Example 15.1 Consider a parabola, 

y = ax2 + bx + c, with a ≠ 0.   

 

There are two essential cases, when a > 0 or a < 0. We have the parabola which 

looks like in the figure                               

                                                      

 

 

               y = ax2 + bx + c                      y = ax2 + bx + c 

                      a > 0                                           a < 0 

We look some numerical examples. 

 

Example 15.2 Sketch the graph of the curve 

   y = f(x) - 3x2 + 5x – 1 

 

We recognize this as a parabola. 

 2
2

5 1( ) ( 3 )f x x
x x

= − + − , 

when  is large positive or negative, then x2 is large positive and the factor on 

the right is close to -3. Hence f(x) is large negative. This means that the 

parabola has the shape as shown in figure. 
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We have ( ) 6 5f x x′ = − + . Thus ( ) 0f x′ =  iff 5
6

x = . There is exactly one 

critical point. We have 
25 5 253 1 0

6 6 6
f    = − + − >   
   

 

 

The critical point is a maximum, because we have already seen that the parabola 

bends down. 

 

The curve crosses the x-axis exactly when  

23 5 1 0x x− + − =  

5 25 12 5 13
6 6

x − ± − ±
= =

−
 

 

Hence the graph of the parabola looks as on the figure. 

 

 

 

     

 

             Bending down or convex upward 

 

The same principle applies to sketching any parabola.  

(i) Looking at what happens when x becomes large positive or negative tells us 

whether the parabola bends up or down. 

 

   

5 13
6

+

 

5 13
6

−

 

5
6
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(ii) A quadratic function  

  f(x) = ax2 + bx + c  with a ≠ 0 

has only one critical point, when 

( ) 2 0f x ax b′ = + =  

So 
2

bx
a
−

=  

 

Knowing whether the parabola bends up or down tells us whether the critical 

point is maximum or minimum, and the value 
2

bx
a
−

= tells us exactly where this 

critical point lies. 

(iii) The points where the parabola crosses the x-axis are determined by the 

quadratic formula. 

 

Example 15.3. (Cubics) Consider a polynomial 

f(x) = x3 + 2x – 1, find f(x) when ±∞→x . We have 

We can write it in the form 

3
2 3

2 11x
x x

 + − 
 

and, when x →+∞means ( )f x →+∞  

 

Example 15.4. (a) Consider the quotient polynomials like  

3

3
2 1( )

2 1
x xQ x

x x
+ −

=
− +

 

Here if x →±∞ , then 1( )
2

Q x → .  
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Example 15.4(b) Consider the quotient 
3

2
1( )
5

xQ x
x

−
=

+
 

Here lim ( ) lim ( )
x x

Q x and Q x
→+∞ →−∞

= +∞ = −∞   

The meaning of the above limit is that there is no number which is the limit of 

Q(x) as x →+∞  or x →−∞ . 

We can now sketch the graphs of cubic polynomials symmetrically. 

 

Example 15.5 Sketch the graph of f(x) = x3 – 2x + 1 

1. If x →+∞ then ( )f x →+∞  

    If x →−∞ then ( )f x →−∞  

2. We have 2( ) 3 2f x x′ = −  

                  2( ) 0 3f x x′ = ⇔ = ±  

The critical points of f are 2
3x = +  and 2

3x = −  . 

3. Let 2( ) ( ) 3 2g x f x x′= = − . Then the graph of g is a parabola which is given 

as  

 

 

 

 

 

 

                    

Graph of ( ) ( )g x f x′=  

2
3

−  2
3
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Therefore, 2 2( ) 0 3 3f x x and x′ > ⇔ > < −  , where g(x) > 0 and  f is 

strictly increasing on the intervals 2
3x ≥  and 2

3x ≤ − . 

Similarly 2 2( ) 0 3 3f x x′ < ⇔ − < <  where g(x) < 0, and  f is strictly 

decreasing on this interval . Therefore 2
3−   is a local maximum for f, and 

2
3  is a local maximum.  

4. ( ) 6f x x′′ = , and ( ) 0f x′′ >  iff  x > 0 and ( ) 0f x′′ <  iff for x > 0, therefore f 

is bending up ( convex downward ) for x > 0 and bending down ( convex 

upward ) for x < 0. There is an inflection point at x = 0.  

 

Putting all this together, we find that the graph of f looks like this 

 

                                                                   graph of f(x) = x3 – 2x + 1  

 

 

 

 

 

 

Example 15.6 Sketch the graph of the curve. 

y = - x3 + 3x - 5 

1. When x = 0 , we have y = -5. With general polynomial for degree ≥ 3 there is 

in general no simple formula for those x such that f(x) = 0, so we do not give 

explicitly in the intersection of the graph with the x – axis.  

2. The derivative is 2( ) 3 3f x x′ = − +  

 

 

 
2
3−  
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                                           ( ) 0 1f x x′ = ⇔ = ±  

The graph of ( )f x′  is given by  

 

 

 

 

 

 

( ) 6f x x′′ = − , (1) 6f ′′ = − , ( 1) 6f ′′ − = , ( ) 0f x′′ >  iff x < 0 and ( ) 0f x′′ <  iff      

x > 0. x = 0 is an inflection point x = 0.  

f  is strictly decreasing  ⇔  ( ) 0f x′ <  

                                                     ⇔  1 1x and x< − >  

f  is strictly increasing  ⇔  ( ) 0f x′ >  

                                                     ⇔  1 1x− < <  . 

Therefore  f  has a local minimum at x = -1 and local maximum at x = 1. 

 

Putting all this information together, we see that graph of  f  looks like this 

 

 

 

 

       graph of  f(x) = - x3 + 3x + 5 

 

 

 

Example 15.7  Let  f(x) = 4x3+2. Sketch the graph of  f.  

 

 

 

 

 

 

 

 
 

 
1

 
 

-1 
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Solution: 

Here we have 2( ) 12 0 0f x x x′ = > ∀ ≠ . There is only one critical point, when  

x = 0. Hence the function is strictly increasing for all x, and its graph looks like 

( ) 24 0 0f x x for all x′′ = > >  

( ) 0 0f x for x′′ < <  

 

                                                               

                                                                     Convex downward                                           

          

convexup    

 

 

 

 

 

Example 15.8 Sketch the graph of   f(x) = 4x3 + 4x . 

 

Solution: 

2( ) 3 4 0f x x x′ = + > ∀  

                       ( ) 6 0 0f x x for x′′ = > >  

                      ( ) 0 0f x for x′′ < <  
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So the graph looks like 

 

                Convex downward 

 

 

 

 

 

 

 

Convex upward 

In both the above examples x = 0 is an inflection point. 

 

15.3 Rational Functions 

We shall now consider quotient of polynomials. 

 

Example 15.9 Sketch the graph of the curve 

                          1( )
1

xy f x
x
−

= =
+

 

1. When x = 0, we have f(x) = 1. When x = 1, f(x) = 0. 

2. The derivative is 
( )2

2( )
1

f x
x

′ =
+

 

It is never zero, so the function has no critical points. 

3. The denominator is a square and hence is always positive, whenever it is 

defined, i.e., for 1x ≠ − . Thus ( ) 0f x′ >  for 1x ≠ − . The function is not 

defined at x = -1 and hence derivative also is not defined at x = -1, i.e., f(x) is 

increasing in the region x < -1 and is increasing  in the region x > -1 
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4. There is no region of decreasing. 

5. Since the derivative is never zero, there is no relative maximum or minimum. 

6. The second derivative is 
( )3

4( )
1

f x
x
−′′ =
+

. 

 

There is no inflection point since  ( ) 0f x′′ ≠  for all x where the function is 

defined. If  x < -1, (x + 1)3 < 0, and  ( ) 0f x′′ > , f(x) is bending up or convex 

downward. If  x > -1, then x+1 > 0⇒ (x+1)3 > 0. So ( ) 0f x′′ < i.e., f(x) is 

bending down (convex upward). 

7. As x →∞ ,   f(x) →1    

11
1( ) lim 1

11 1
x

x
x xf x
x x

x
→∞

 − −  = = =
+  + 

 

                     

when x →−∞ ,   f(x) →1                                                                     

 

 

  

 

 

  x=0 
f(x)=1 

x=1 
f(x)=0 

 
f(x) 
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8. As 1x →− , the denominator approaches 0 and the numerator approaches -2. 

If  x approaches -1 from the right so x > -1, then the denominator is +ve and the 

numerator is negative. Hence the function 1
1

x
x
−
+

 is negative , and is large 

negative.  Putting all these information we get the graph looks like the given 

figure.  

 

EXERCISES  

Sketch the following curves, indicating all the information stated in the 

examples etc.  

1. 
2 2

3
xy
x
+

=
−

     

2. 2
3
1

xy
x
−

=
+

 

3. 4 4y x x= +      

4. 8y x x= +  

5. 4 3 2( ) 3 5f x x x x= + − +    

6. 
2 1xy
x
−

=  

7. Show that a curve 3 2y ax bx cx d= + + + with  a 0≠  has exactly one 

inflection point. 

 

Keywords: Curve tracing, increasing, decreasing, convex up, convex down.   
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Module 2: Integral calculus 

Lesson 16 

Improper Integral 

 

16.1 Introduction  

Integral with infinite limits. Let a function f(x) be defined, positive and continuous 

for all values of x such thata x≤ < ∞ . Consider the integral 

 

( ) ( )
b

a
I b f x dx= ∫  

 

 

 

 

 

 
 

 

 

Fig. 1 

 

This integral is meaningful for b > a. This integral varies with b and is continuous 

function of b. Let us consider the behavior of this integral when b →+∞  (Fig. 1). 

Definition 16.1 if there exists a finite limit 

 

lim ( )
b

ab
f x dx

→∞ ∫  

 

x 

y 

O b a 
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Then this limit is called the improper integral of the function f(x) on the interval 

[ ],a +∞  and is denoted by the symbol  

 

( )
a

f x dx
+∞

∫  

 

Thus, by definition, we have  

 

( ) lim ( )
b

a ab
f x dx f x dx

+∞

→∞
=∫ ∫  

 

In this case it is said that the improper integral exists or converges. If ( )
b

a
f x dx∫  

as b →+∞  does not have a finite limit, one say that ( )
a

f x dx
+∞

∫  does not exist or 

diverges.  

 

If ( ) 0f x ≥ , the geometrical meaning of the improper integral can be seen as if the 

integral ( )
b

a
f x dx∫  expresses the area of region bounded by the curve y = f(x), the 

x – axis and the ordinates x = a, x = b,  it is natural to consider that the improper 

integral ( )
a

f x dx
+∞

∫  expresses the area of an unbounded ( infinite ) region lying 

between the  curve  y = f(x), x = a and x-axis. 

 

We similarly define the improper integrals of other infinite intervals: 

 

( ) lim ( )
a a

f x dx f x dx
αα−∞ →−∞

=∫ ∫  
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( ) ( ) ( )
c c

f x dx f x dx f x dx
+∞

−∞ −∞ −∞
= +∫ ∫ ∫  

 

The latter equation should be understood as if each of the improper integrals on the 

right exists, then, by definition, the integral on the left also exists (converges).  

 

Example 16.1: Evaluate the integral 20 1
dx

x
+∞

+∫  

 

Solution:  

By the definition of improper integral we find  

               

1
2 20 0 0

lim lim tan
1 1 2

bb

b b

dx dx x
x x

π+∞ −

→∞ →∞
= = =

+ +∫ ∫  

 

Note that this integral expresses the area of an infinite curvilinear trapezoid crosses 

x –axis as x →∞ . 

 

Example 16.2: Evaluate 21
dx

x
+∞

−∞ +∫  

 

Solution:  

0

2 2 201 1 1
dx dx dx

x x x
+∞ +∞

−∞ −∞
= +

+ + +∫ ∫ ∫  

 

The 2nd integral is    equal to 
2
π

 (see example 1)  
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Compute the First Integral: 

 

( )
00 0 1 1 1

2 2lim lim tan lim tan 0 tan
1 1 2bb b bb

dx dx x b
x x

π− − −

−∞ →−∞ →−∞ →−∞
= = = − =

+ +∫ ∫  

 

Hence, 21 2 2
dx

x
π π π

+∞

−∞
= + =

+∫  

 

In many cases it is sufficient to determine whether the given integral converges or 

diverges, and to estimate its value. The following theorems, which we give without 

proof, may useful in this respect. 

 

Theorem 16.1: Let f and g be continuous function on the interval [ , )a ∞  with  

( ) ( )o f x g x≤ ≤  ∀ a x≤ < ∞ . 

 

If  ( )
a

g x dx
+∞

∫  converges then ( )
a

f x dx
+∞

∫  also converges, and  

( ) ( )
a a

f x dx g x dx
+∞ +∞

≤∫ ∫  

 

Theorem 16.1: The integral of a discontinuous function:  

The integral ( )
c

a
f x dx∫  of the function f(x) discontinuous at a point c is defined as 

follows: 
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0
( ) lim ( )

c c

a a
f x dx f x dx

ε

ε

−

→ +
=∫ ∫  

 

If the limit on the right exists, the integral is called an improper convergent 

integral, otherwise it is divergent. If the function f(x) is discontinuous at x = a of 

the interval [a,c] then by definition , 

 

0
( ) lim ( )

c c

a a
f x dx f x dx

εε +→
=∫ ∫  

 

If the function f(x)  is discontinuous at some point x = x0 inside the interval [a,c]  , 

we put 

 
0

0

( ) ( ) ( )
c x c

a a x
f x dx f x dx f x dx= +∫ ∫ ∫  

 

If both the improper integrals on the right hand side of the equation exist. 

 

Example 16.3 Evaluate 
1

0 1
dx

x−∫  

 

Solution:   
1 1

0 00
lim

1 1
dx dx dx

x x
ε

ε

−

→
=

− −∫ ∫  

                        ( )
1
2

1

00
lim 1 x dx

ε

ε

− −

→
= −∫  

                         
( )

1
2

1

1
2

0

1
1

x
ε−

−
= −

− +
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1

0
2 1 x

ε−
= − −  

                       ( )
0

lim 2 1
ε

ε
→

= − −    = 2 

 

Example 16.4: Evaluate the integral
1

21

dx
x−∫ . 

 

Solution: 

Since inside the interval of integration there exist a point x = 0, at which the 

integrand is not continuous, we express the integration as:   

 

1 0 1

2 2 21 1 00 0
lim limdx dx dx

x x x
ε

εε ε

−

− − +→ →
= +∫ ∫ ∫  

                                                                       
1

2 210 0
lim limdx dx

x x
ε

εε ε

−

−→ →
= +∫ ∫  

                                                                       

1

0 0
1

1 1lim lim
x x

ε

ε ε
ε

−

→ →
−

= − −  

                                                                       
0 0

1 1lim 1 lim 1
ε εε ε→ →

   = − − + − −   
   

 

 

But  
0

1lim 1
ε ε→

 − − + = ∞ 
 

 and 
0

1lim 1
ε ε→

 − − = ∞ 
 

 i.e., the integral diverges on [-1,0] 

as well as on [0,1] . 

 

Hence the given integral diverges on the entire interval [-1, 1]. 
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It should be noted that if we had evaluated the given integral without paying 

attention to the discontinuity of the integrand at point x = 0, the result would have 

been wrong as 
1

1

21
1

1 1 1 2
1 1

dx
x x−

−

−  = = − − = − − ∫  

 

For determining the convergence of improper integrals of discontinuous functions 

and for estimating their values, one can refer Lesson 17.  These integrals are 

discussed in details in Lesson 17 also. 

 

,
( ) ( )

c c

p pa a

dx dxalso
c x x a− −∫ ∫  

 

It is easy to verify that 
( )

c

pa

dx
c x−∫ converges for p < 1 and diverges for p ≥  1. 

Same applies also to 2nd integral. 

 

EXERCISES 

Evaluate the following improper integrals: 

1. 
1

20 1
dx

x−
∫     

2. 
0

xe dx
∞ −∫      

3. 2 20

dx
a x

∞

+∫     
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4. 
1

20 1
dx

x−
∫     

5. 
1

0
ln x dx∫      

 

Ans.: 1. 1, 2. 1, 3. ( 0)
2

a
a
π

> , 4. 
2
π

 & 5. 1 

 

Keywords: Improper Integrals, Positive Function, Area Of  the Region. 
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Module 2: Integral Calculus 

Lesson 17 

Tests for Convergence 

 

17.1 Introduction 

In this Lesson the convergence of Improper Integrals is studied. 

 

Definition 16.1 if there exists a finite limit 

 

lim ( )
b

ab
f x dx

→∞ ∫  

 

Then this limit is called the value of the improper integral of the function f(x) 

on the interval [ ],a +∞  and is denoted by the symbol  

 

( )
a

f x dx
+∞

∫  

 

Thus, by definition, we have  

 

( ) lim ( )
b

a ab
f x dx f x dx

+∞

→∞
=∫ ∫  

 

In this case it is said that the improper integral exists or converges. If 

( )
b

a
f x dx∫  as b →+∞  does not have a finite limit, one say that ( )

a
f x dx

+∞

∫  

does not exist or diverges.  

 

If ( ) 0f x ≥ , the geometrical meaning of the improper integral can be seen as if 

the integral ( )
b

a
f x dx∫  expresses the area of region bounded by the curve y = 
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f(x), the x – axis and the ordinates x = a, x = b,  it is natural to consider that the 

improper integral ( )
a

f x dx
+∞

∫  expresses the area of an unbounded ( infinite ) 

region lying between the  curve  y = f(x), x = a and x-axis. 

 

We similarly define the improper integrals of other infinite intervals: 

 

( ) lim ( )
a a

f x dx f x dx
αα−∞ →−∞

=∫ ∫  

( ) ( ) ( )
c c

f x dx f x dx f x dx
+∞

−∞ −∞ −∞
= +∫ ∫ ∫  

 

The latter equation should be understood as if each of the improper integrals on 

the right exists, then, by definition, the integral on the left also exists 

(converges).  

 

Example 16.1 Find out at which p the integral 
1 p

dx
x

+∞

∫  converges and at which 

it diverges. 

 

 

 

 

 

                                                  a                            b                                       

                                          

 

Solution:  

Since (when 1p ≠ ) 
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( )1 1

1
1

1 1 1
1 1

b
b p p

p
dx x b
x p p

− −= = −
− −∫  

 

We have  

( )1

1

1lim 1
1

p
p b

dx b
x p

+∞ −

→+∞
= −

−∫  

 

Consequently, with respect to like this integral we conclude that if p > 1, then 

1

1
1p

dx
x p

+∞
=

−∫  , and the integral converges.  

 

If p < 1, then 
1 p

dx
x

+∞
= ∞∫   and integral diverges.  

 

When p = 1, 
11

lnp
dx x
x

+∞ +∞= = ∞∫ , and the integral diverges. 

 

Note: We call the p-integral 
1 p

dx
x

+∞

∫ converges for p > 1, and diverges for 1p ≤  

which is in the comparison test of improper integral used. 

 

In many cases it is sufficient to determine whether the given integral converges 

or diverges, and to estimate its value. The following theorems, which we give 

without proof, may useful in this respect. 

 

Theorem 17.1. Let f and g be continuous function on the interval [ , )a ∞  with  

( ) ( )o f x g x≤ ≤  ∀ a x≤ < ∞ . 
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If  ( )
a

g x dx
+∞

∫  converges then ( )
a

f x dx
+∞

∫  also converges, and  

( ) ( )
a a

f x dx g x dx
+∞ +∞

≤∫ ∫  

 

Example 17.2 Investigate the integral 21 (1 )x
dx

x e
+∞

+∫  for convergence.  

 

Solution:  

It will be noted that when 1 x≤   

2 2
1 1

(1 )xx e x
<

+
 

And 21
1

1 1dx
x x

+∞
+∞

= − =∫  

Consequently, 21 (1 )x
dx

x e
+∞

+∫  converges, and its value is less than 1. Hence 

21 (1 )x
dx

x e
+∞

+∫  converges. 

 

Theorem 17.2. If for all ( ) ,0 ( ) ( )x x a g x f x≥ ≤ ≤  holds true and ( )
a

g x dx
+∞

∫  

diverges, then the integral ( )
a

f x dx
+∞

∫  also diverges. 

 

Example 17.3 Find out whether the following integral converges or diverges.  

31

1x dx
x

+∞ +
∫  

 

Solution: 
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We note that 
3 3

1 1x x
xx x

+
> =  

But 1
21

dx
x

+∞
= ∞∫  as 

1 2
2

p = < . Hence the given integral is divergent. 

 

In the above two theorems we considered improper integrals of nonnegative 

functions.  For the case of a function f(x) which changes its sign over an infinite 

interval we have the following result.  

 

Theorem17.3. If the integral ( )
a

f x dx
+∞

∫  converges, then the integral 

( )
a

f x dx
+∞

∫  also converges.  

In this case, the later integral is called an absolutely convergent integral.  

 

Definition 17.1: An integral ( )
a

f x dx
+∞

∫  converges conditionally if and only if  

( )
a

f x dx
+∞

∫  converges but ( )
a

f x dx
+∞

∫   is not convergent.  

 

Example 17.3 Investigate the convergence of the integral 31

sin x dx
x

+∞

∫ . 

 

Solution: 

Here, 3 3
sin 1x

x x
≤ . But 31

1 dx
x

+∞

∫  convergent as p = 3.   

Therefore, the integral 31

sin x dx
x

∞

∫  also converges. 
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17.2 The Integral of a Discontinuous Function  

A function f(x) is defined and continuous whena x c≤ < , and either not defined 

or discontinuous when x = c. In this case, one cannot speak of the integral 

( )
c

a
f x dx∫ as limit of integral sums, because f(x) is not continuous on [a, c] and 

for this reason the limit may not exist.  

 

The integral ( )
c

a
f x dx∫  of the function f(x) discontinuous at a point c is defined 

as follows: 

0
( ) lim ( )

c c

a a
f x dx f x dx

ε

ε

−

→
=∫ ∫  

 

If the limit on the right exists, the integral is called an improper convergent 

integral, otherwise it is divergent. If the function f(x) is discontinuous at x = a of 

the interval [a, c] then by definition, 

 

0
( ) lim ( )

c c

a a
f x dx f x dx

εε +→
=∫ ∫  

 

If the function f(x) is discontinuous at some point x = x0 inside the integral [a, c]  

, we put 

0

0

( ) ( ) ( )
c x c

a a x
f x dx f x dx f x dx= +∫ ∫ ∫  

 

If both the improper integrals on the right hand side of the equation exist. 

 

Example 17.4 Test the convergence of the integral
1

21

dx
x−∫ . 
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Solution:  

Since inside the interval of integration there exist a point x = 0, at which the 

integrand is not continuous, we express the integration as:   

 

1 0 1

2 2 21 1 00 0
lim limdx dx dx

x x x
ε

εε ε

−

− − +→ →
= +∫ ∫ ∫  

                                                   
1

2 210 0
lim limdx dx

x x
ε

εε ε

−

−→ →
= +∫ ∫  

                                                   
1

0 0
1

1 1lim lim
x x

ε

ε ε
ε

−

→ →
−

= − −  

                                                   
0 0

1 1lim 1 lim 1
ε εε ε→ →

   = − − + − −   
   

 

 

But  
0

1lim 1
ε ε→

 − − + = ∞ 
 

 and 
0

1lim 1
ε ε→

 − − = ∞ 
 

 i.e., the integral diverges on [-

1, 0] as well as on [0,1] . 

 

Hence the given integral diverges on the entire interval [-1, 1]. 

 

It should be noted that if we had evaluated the given integral without paying 

attention to the discontinuity of the integrand at point x = 0, the result would 

have been wrong as 
1

1

21
1

1 1 1 2
1 1

dx
x x−

−

−  = = − − = − − ∫  

 

This is impossible (Fig. 3)  

 

 

                 1
2y

x
=  

x = 0 
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Fig. 3 

 

Note:  If the function f(x), defined on the interval [a, b], and has finite number 

of discontinuity points  a1, a2,…., an within the interval,  

 

Then 1 2

1

( ) ( ) ( ) ..... ( )
n

b a a b

a a a a
f x dx f x dx f x dx f x dx= + + +∫ ∫ ∫ ∫  

 

If each of the improper integrals on the right side of the equation converges then 

( )
b

a
f x dx∫ is called convergent but if even one of these integrals diverges, then 

( )
b

a
f x dx∫  too is called divergent.  

 

For determining the convergence of improper integrals of discontinuous 

functions and for estimating their values, one can frequently make use of 

theorems similar to those used to estimate integrals within infinite limits. 

 

Theorem 17.3. Let f(x) and g(x) be continuous functions in [a,c] except at x = c 

and at all points of this interval the inequalities  g(x) ≥  f(x)  hold and 

( )
c

a
g x dx∫ converges, then ( )

c

a
f x dx∫   also converges. 

 

-1 -1 

(-1, 1) (1, 1) 
y = 0 
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Theorem 17.4. Let f(x) and g(x) be continuous functions on [a,c] except at x = 

c and at all points of this interval the inequalities  f(x) ≥  g(x)  ≥ 0 hold and  

( )
c

a
g x dx∫  diverges, then ( )

c

a
f x dx∫  also diverges. 

 

Theorem 17.5.  Let f(x) be a continuous function on [a, c] except at x = c , and 

the improper integral ( )
c

a
f x dx∫  of the absolute value of this function 

converges, then the integral ( )
c

a
f x dx∫  of function of itself also converges. We 

frequently come across the improper integral of the following types. 

,
( ) ( )

c c

p pa a

dx dxalso
c x x a− −∫ ∫  

It is easy to verify that 
( )

c

pa

dx
c x−∫ converges for p < 1 and diverges for p ≥  1. 

Same applies also to 2nd.  

 

Example17.5 Does the integral 
1

30 4
dx

x x+
∫  converge? 

 

Solution:  

The integrand is discontinuous at x = 0.  

Now  
3

1 1
4 xx x

≤
+

 

 

The improper integral 1
2

1

0

1 1
2

dx as
x

<∫   exists and hence 
1

30 4
dx

x x+
∫  also 

exists. 
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EXERCISES 

 

Test the convergence of the following improper integrals: 

1. 
0

sinx x dx
∞

∫     

2.
1

dx
x

∞

∫      

3. 2 2 2
dx

x x
∞

−∞ + +∫     

4. 1
3

1

0

dx
x∫

     

5. 
2

30

dx
x∫      

6. Let b > 2. Find the area under the curve 2xy e−=  between 2 and b. Does this 

area approach a limit whenb →∞ . If so what limit? 

7. Can an improper integral ( )
a

f x dx
∞

∫  ever be transformed onto a proper 

integral by a change of variable? 

 

Ans.: 1. The integral diverges, 2. The integral diverges, 3. π , 4. 
3
2

, 5. The 

integral diverges, 6. 2 4 41 1 1,
2 2 2

be e yes e− − −− +  & 7. Yes,  2
1 1( ) ,f x x
x t

= = . 

 

Keywords: Convergence, absolutely convergence, comparison test. 
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Module 2: Integral Calculus 

Lesson 18 

Rectification 

 

18.1 Introduction 

The method of finding the length of the arc of the curve of is called the 

rectification. Let ( )y f x= be a differentiable function defined on [ , ]a b  with 

a b<  and assume that its derivative is continuous. Our aim is to determine the 

length of the curve described by the graph. The main idea behind this is to 

approximate the curve by small line segments and add these up. 

                         

                                             

                                     

 

                     

               0a x=           1x           2x           3x        4x b=         

                                             

 

Fig .1 

 

We consider a partition of the interval[ , ]a b . 0 1 2 3....... na x x x x x b= ≤ ≤ ≤ ≤ =  
In figure 1 take 4n =  for simplification. 

 

For each ix we have on the curve ( ), ( )i ix f x . We draw the line segments between 

two successive points. The length of such a segments the length of the line 

between  

 

  
 

(x1,f(x1)
 (x2,f(x2)

 (x3,f(x3)
 

(x4,f(x4)
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( ), ( )i ix f x and ( )1 1, ( )i ix f x+ +  is equal to ( ) ( )22
1 1( ) ( )i i i ix x f x f x+ +− + − ------------- 

(1) 

( ) ( )1 1( ) ( ) ( )i i i i if x f x x x f c+ + ′− = −  

 

By mean value theorem, we conclude that  

 

( )1 1( ) ( ) ( )i i i i if x f x x x f c+ +− ′= −  , where 1( , )i i ix xc +∈  

 

Hence (1) becomes now  

 

( ) ( )2 2 2
1 1 ( )i i i i ix x x x f c+ ++ ′− −  

( )2 2
1 1 ( )i i ix x f c+  = + ′− -------------- (18.2) 

 

Hence the form of the line segment is  

 

( )
1

2
1

0
1 ( )

n

i i i
i

f c x x
−

+
=

′+ −∑ ----------------- (18.3) 

 

Now as ( )f x′ is continuous function. So is 2( ) 1 ( )H x f x= + ′  . So we can write 

eqn. (3) as ( )
1

1
0

( )
n

i i i
i

H c x x
−

+
=

−∑  

 

Since ( )H x is continuous on[ , ]a b , ( )iH c satisfies the inequalities: 

 

[ ] [ ]1 1, ,
( )min max

i i i i
ix x x x

H H c H
+ +

≤≤  
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i.e., ( )iH c lies between the minimum and the maximum of on the 

interval 1[ , ]i ix x + . Thus the sum we have written down lies between a lower sum 

and an upper sum for the function H  . We call such sums as Riemann sums. 

This is true for every partition of the interval. 

 

We know from basic integration theory that there is exactly one number lying 

between every upper sum and every lower sum, and that number is the definite 

interval. Therefore it is reasonable to define:  

 

Length of our curve between a and b 

 

2
21 1 ( )

b b

a a

dy dx f x dx
dx

  ′ = + = +    ∫ ∫ ---------(18.4) 

 

Similarly for ( )x yφ= and ( )yφ′  are continuous on [ , ]a b  , then the length of our 

curve between a and b is  

 

2
21 1 ( )

b b

a a

dx dy y dy
dy

φ
  ′= + = + 
 

∫ ∫  

 

Example18.1 Find the length of the arc of 3
2( )f x x=  on [0, 4]. 

 

 

 

Solution:   
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As 
1
2

3
2

, ( )f f x x′ = are both continuous on [0, 4], the length of the arc or length 

of curve L = 
1
2

24 4

0 0

3 91 1
2 4

x dx x dx + = + 
 ∫ ∫    , 

 

 Let 91
4

x t+ = , when x=0, t=1,  

                                x=4, t=10 

         
3 31

2 2 2

104 10

10 1

9 4 4 2 81 10 1
4 9 9 3 27

x dx t dt t  + = = × × = − ∫ ∫  

 

 

Example 18.2 Find the length of the curve y=x2  between x =0 and x =1.  

 

Solution:  

From the definition above, we see that the integral is  

 
1 1

2 2

0 0

1 (2 ) 1 4x dx x dx+ = +∫ ∫  set u =2x, du = 2dx 

        When x=0, u=0, x=1, u=2 

 

Hence 
1 2

2 2

0 0

11 4 1
2

x dx u du+ = +∫ ∫ ---------------------------- (18.5), 

 

We can find the integral 2

0
1

b
x dx+∫  for b > 0, as  

( ) ( ) ( )2 2
2 2 21 1 11 2ln 1 1

4 2 2
b b b b b b

− + + + + + − + +  
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So  ( ) ( ) ( )2 22 2

0

1 1 11 2 5 2ln 2 5 2 5
4 2 2

u du
− + = + + + − +∫   

 

Hence (18.5) becomes: ( ) ( ) ( )2 21 1 12 5 2ln 2 5 2 5
8 2 2

− + + + − +    

 

18.2 Length of Parameterized Curve  

There is one other way in which we can describe a curve. Suppose that we look 

at a point which moves in the plane. Its coordinates can be given as a function 

of time t. Thus, we get two functions of t, say  

 

x = f(t),  y = g(t), 

 

We may view these as describing a point moving along a curve. The functions f 

and g give the coordinates of the point as function of   t. 

 

Example 18.3 Let, cos , sinx r y rθ θ= =  .  Then  

( )( , ) cos , sinx y r rθ θ=  is a point on the circle.  

 

                                           

 

  

As θ  increases, we view the point as moving along the circle in anticlockwise 

direction. The choice of letter θ  really does not matter and we could use t  

instead. In particular, the angle  θ   is itself express as a function of time. For 

example, if a bug moves around the circle with uniform (constant) angular 

speed, then we can write tθ ω= , where ω  is constant. 

 

Then cos( )x tω= , sin( )y tω= . 

θ  
( )cos ,sinθ θ  

r =1 
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When ( , )x y is described by two function of t as above, we say that we have a 

parameterization of the curve in terms of parameter t. 

 

This describes the motion of a bug around the circle with angular speedω . Note 

that the parametric representation of a curve is not unique. For 

example sinx r θ= , cosy r θ=  also represents a point on the circle.  

 

We shall now determine the length of a curve given by a parameterization. 

Suppose that our curve is given by  

 

x = f (t), y = g (t), with a t b≤ ≤  

 

and assume that both f, g have continuous derivatives. With eqn (18.4) it is very 

reasonable to define the length of our curve (in parametric form) to be  
 

2 2( ) ( )
b

b
a

a

l f t g t dt′ ′= +∫ . 

 

Observe that when a curve is given in usual form y = f(x) we can let 

 

t = x = g (t)   and y = f (t). 

 

This shows how to view the usual form as a special case of the parametric form. 

In that case ( ) 1g t′ =  and the formula for the length in parametric form is seen to 

be the same as the formula we obtained before for a curve y = f(x) .It is also 

convenient to put the formula in the other standard notation for the derivative. 

We have  
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( )dx f t
dt

′=  and ( )dy y t
dt

′=  

 

Hence the length of the curve can be written in the form  
 

2 2b
b
a

a

dx dyl dt
dt dt

   = +   
   ∫  

 

Without loss of generality let 

s(t) = length of the curve as function of  t. 

 

Thus we may write  
 

2 2

( )
t

a

dx dys t dt
dt dt

   = +   
   ∫  

 

This gives 
 

2 2
2 2( ) ( )ds dx dy f t g t

dt dt dt
    ′ ′= + = +   
   

 

 

Sometimes one writes symbolically 

 

(ds)2 = (dx)2 + (dy)2 

 

To suggest the Pythagoras theorem i.e., 
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2

1ds dy
dx dx

 = +  
 

 

  

Example 18.4  Find the length of the curve  x = cos t ,  y = sin t  between 

0,t t π= =  

 

Solution:  

The length is the interval  

 

                        ( ) ( )2 2

0

sin cost t dt
π

+∫  

                         π=  
 

If we integrate between  0 and   2π  we would get 2π . This is the length of the 

circle of radius 1. 

 

Example 18.5 Find the length of the curve   x = et cos t  ,   y = et sin t between t 

=1 and t = 2. 

 

Solution: 

( ) ( )
2 22

2
1

1

cos sint tl e t e t dt   ′ ′= +      ∫  

2
2 2

1

( sin cos ) ( cos sin )t t t te t e t e t e t dt= − + + +∫  

2
2 2 2 2 2 2 2 2

1

( sin cos cos sin )t t t te t e t e t e t dt= + + +∫  
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2
2

1

2 2te dt e e = = − ∫  

 

Example 18.6 Find the length of the curve 
3cosx θ=   ,   3siny θ=   for  20 πθ≤ ≤  

 

Solution: 

 We have 23cos ( sin )dx
d

θ θ
θ
= −  

                                           23sin cosdy
d

θ θ
θ
=  

 

Hence, 

 

2

2 4 4 2
0

0

9cos 9sin cosl d
π

π

θ θ θ θ= +∫  

      
2

2 2

0

3 cos sin d
π

θ θ θ= ∫  

      
2

0

3 sin cos d
π

θ θ θ= ∫   as sin , cos 0θ θ >   for 20 πθ≤ ≤  

 

Hence  

 

2 2 2
2

0
00 0

3 3 33 sin cos sin 2 cos2
2 4 2

l d d
π π π

π

θ θ θ θ θ θ= = = − =∫ ∫  

 

EXERCISES 
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 Find the length of the following curves: 

1. 1ln , 2 ,
2

y x x= ≤ ≤                                                

2. 24 , 2 2 ,y x x= − − ≤ ≤                                       

3. 1 ( )
2

x xy e e−= +  between  x = 1 and x = -1   

4. 3ln cos , 0 ,y x x π= ≤ ≤                                  

5. Find the length of the circle of  radius r .      

6. Find the length of the curve  x = cos3t, y = sin3t   between t = 0 and t = π                                                                                                

7. Find the length of the curve  x = 3t , y = 4t – 1 , 0 1t≤ ≤ .                  

8. Find the length of the curve  x = 1- cos t , y = t- sin t , 0 2t π≤ ≤ .        

9. Using exercise (9), find the length of the curve  2
2sinr θ=   from  0 to π . 

                      

Ans.: 1.  5 4 2 5ln
2 1 5

 +
+  

+ 
, 2. 

1
417 42 17 ln

17 4
 +

+  
− 

, 3. 1e
e

− , 4. ( )ln 2 3+ , 

5. 2 rπ , 6. 3, 7. 5, 8. 8 & 9. 2 
 

Keywords:  Rectification, length of curve, parametric form,  
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Module 2: Integral Calculus 

Lesson 19 

Volume and Surface of Revolution 

 

19.1 Introduction 

Volume of Revolution: We start our applications with volumes of revolutions. 

Our aim is to find the lengths, areas and volumes of the standard geometric 

figures. 

  

Let ( )y f x= be continuous function of x on the interval with [ , ]a b with ( )a b< . 

Assume that ( ) 0 [ , ]f x x a b≥ ∀ ∈ . If we revolve ( )y f x=  around axis, we 

obtain a solid, whose volume we want to compute. 

 

 

 

 

                                                         ix                      1ix +  

 

 

 

Take a partition of [ , ]a b say 0 1 2 3 ..... na x x x x x b= ≤ ≤ ≤ ≤ ≤=  

 

Let ic be a minimum of f on the interval 1[ , ]i ix x + and id be the maximum of f
 
in 

that interval. Then the solid of revolutions is that small interval lies between a 

small cylinder and a big cylinder. The width of these cylinders is 1i ixx + −  and the 

radius is ( )if c  for the small cylinders and ( )idf for the big cylinder. Hence the 

volume of revolutions, denoted by V satisfies the inequalities 
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Volume and Surface of Revolution 

 
1 12 2

1 1
0 0

( ) ( ) ( ) ( )i

n n

i i i i i
i i

cf x x V f d x xπ π
− −

+ +
= =

− ≤ ≤ −∑ ∑  

 

It is therefore reasonable to define this volume to be 2( )
b

a
V f x dxπ= ∫  

If we revolve the curve around ( )x yφ= around y axis−  and 

( ) 0 [ , ]y y c dφ ≥ ∀ ∈ , we define the volume to be 2( )
d

c

dyV f yπ= ∫  

 

If the curve be expressed by ( ), ( )x f t y tφ= =  

( )
2

1

22 ( ) ( )
tb

a t

dx t f t dtV y φπ π ′== ∫ ∫ where 1 2,t t are values of t  that corresponds to 

x a= and x b= respectively. 

  

Example 19.1: Compute the volume of the sphere of radius 1. 

 

Solution:  

We take the function 21y x= −  between 0 and 1. If we rotate this curve around 

x axis− , we shall get half the sphere. Its volume is therefore  

131
2

0 0

2(1 ) ( )
3 3
xx dx xπ π π− = − =∫  

So the volume of full sphere is 2 42
3 3
π π× =  

 

Example 19.2: Find the volume obtained by rotating the region between 3y x=  

and y x=  in the first quadrant around the x axis−  . 
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Volume and Surface of Revolution 

 
                                                    2y x=  

                                                                  2y x=  

 

 

 

 

 

The graph of the region is given on the figure.  

 

As    3 2( ) 0 0, 1x x x x x x x= ⇒ − = ⇒ = = ± , for first quadrant we take 0 1x≤ ≤ . 

The required V volume is equal to the difference of the volume obtained by 

rotating y x=  and 2y x= . 

Let 3( ) , ( )f x x g x x= = . Then 
1 1

2 2

0 0

( ) ( )f x dx g x dxV π π−= ∫ ∫  

    
1 1

2 6

0 0
x dx x dxπ π= −∫ ∫  

    
3 7
π π

= −
 

 

Example 19.3: (Volume of Chimneys) . Consider the function 1( )f x
x

=   . 

  

                               a  

 

 

 1
            
  

b a 
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Volume and Surface of Revolution 

 

Let 0 1a< < . The volume of revolution of the curve 1y
x

=  between x a=  and 

1x =  is given by 
1

1ln ln
a

a

dx
x

x aπ π π= = −∫ , 

 

As 0a → , ln a
 
becomes very large negative, so that ln a−  becomes very large 

positive, and the volume becomes arbitrary large. The above figure illustrates 

the chimney. 

 

In this computation, we determined the volume of a chimney near the y axis−  . 

We can also fixed the volume of the  chimney going off to the right, say 

between 1 and a number b >1. Suppose the chimney is defined by 1
x

y = . The 

volume of revolution between 1 and b  is given by the integral 

1 0

1 ln
b b

dx
x

dx b
x

π π π 
 
 

= =∫∫ ,as b→∞we see that this volume becomes arbitrary 

large (divergent integral)  

But we are interested to find finite volume for the infinite chimney.  

 

Example 19.4: Compute the volume of revolution of  the curve 4

1
x

y =  between 

a and 1. Find the limit as 0a→  

 

Solution:  

The volume of revolution of the curve 4

1
x

y =  between x a=  and 1x =  

is given by the integral 
11 11 1

2 2
1
2

1 2 2 1
a a a

dx x dx x a
x

π π π π
−

 
 = = × = −∫ ∫
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Volume and Surface of Revolution 

 
When 0a→ limit becomes 2π  

 

Example 19.5 Find the volume of a cone whose base has a radius r  , and a 

height h  , by rotating a straight line passing through the origin around the 

x axis−  

 

Solution: 

 

  

                                                                          

 

 

The equation of the straight line is r x
h

y =  . Slant height is 2

1y
x

= . Hence the 

volume of the cone is 
2 3

2
2

2 2
2

2
0 0

1
3 3

h h r h r h
h

r rx dx x dx
h h

π ππ π  × = 
 

= =∫ ∫   

 

19.2 Surface of Revolution 

Let ( )y f x= be a positive continuously differentiable function on an interval 

[a,b]. We wish to find a formula for the area of the surface of revolution of the 

graph of f  around the x axis− , as given in the figure 

 

 

 

 

 

We shall see that the surface area is given by the integral 

  

 
r 

h 
     

 

x 

y ry x
h

=  

a b 
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Volume and Surface of Revolution 

 
2

2 1
b

a

dyy
dx

S dxπ  +  
 

= ∫  

 

The idea again is to approximate the curve by line segments. We use a partition 

0 1 2 3....... na x x x x x b= ≤ ≤ ≤ ≤ =  
 

                                                                      1( )if x +  
                                                                                    

 

 

 

 

 

 

On the small interval 1[ , ]i ix x +  the curve is approximated by the line segment 

joining the points ( ) ( )1 1, ,( ) ( )i i i ix x and x xf f+ + . Let iL be the length of the segment. 

Then ( ) ( )( )22 2
1 1( )i i i i ix x x xL f f+ +− + −=  

 

The length of a circle of radius y is 2 yπ . If we rotate the line segment about the 

then the x axis−  area of the surface of rotation will be between 2 ( )i itf Lπ and 

2 ( )i if s Lπ where ( )if t and ( )if s are the minimum and maximum of f , 

respectively on the interval 1[ , ]i ix x + . This is illustrated on Fig 1. 

 

 

        

 

 

( )if x

 

 

1( )if x +

 
xi  xi+1 

Li 

( )if x
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On the other hand, by the mean value theorem we can write 

 

1 1 1) , , )( ) ( ) ( )( (i i i i i i i ix xf f f c x x c x x+ + +− ∈′− =  

 

Hence ( ) ( )2 22
1 1( )i i i i i ix x x xL f c+ +− + −=  

               
( )2

11 ( )i i if c x x+′= + −  

 

Therefore the expression ( )2
12 ( ) 1 ( )i i i if c f c x xπ +′+ −  

is an approximation of the surface of revolution of the curve over the small 

interval 1[ , ]i ix x + . 

 

Now take the sum ( )
1

0

2
12 ( ) 1 ( )

n

i
i

i i if c f c x xπ
−

=
+′+ −∑  

 

This is a Riemann sum, between the upper and lower sums for the integral 

 

22 ( ) 1 ( )
b

a

S f x f x dxπ ′= +∫
 

 

Thus it is reasonable that the surface area should be defined by this integral, as 

was to be shown. 

 

19.2.1 Area of revolution for parametric curves given in parametric form.  

Suppose that  
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( ), ( ),x f t y g t a t b= = ≤ ≤  

We take a partition 0 1 2 3....... na t t t t t b= ≤ ≤ ≤ ≤ =  

Then the length of iL between ( )( ), ( )i if t g t and ( )1 1( ), ( )i if t g t+ + is given by  

( ) ( )2 2
1 1( ) ( ) ( ) ( )i i i i if t f t g t g tL + +− + −=  

   ( )2 2
1( ) ( )i i i if c g d t t+′ ′+ −=  

 

where ,i ic d  are numbers between it and 1it +  

 

 

                                                                   

 

 

Hence ( )2 2
12 ( ) ( ) ( )i i i i it tg c f c g dπ + −′ ′+  is an approximation for the surface of 

revolution of the curve in the small interval 1,i it t +   . Consequently, it is 

reasonable that the surface of revolution is given by the integral  

 

2 2

2
b

a

dx dy
S y dt

dt dt
π= +∫

   
   
     

 

when t x= , this coincides with the formula found previously.  It is also useful to 

write this formula symbolically 2S ydsπ= ∫  

where symbolically, we had used  

(f(ti+1), g(ti+1))     (f(ti), g(ti)) 
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Volume and Surface of Revolution 

 
 

( ) ( )2 2ds dx dy= +  

 

When using this symbolic notation, we don not put limits of integration. Only 

when we use explicit parameter over an interval a t b≤ ≤ we explicitly write the 

surface area as  

 

2
b

a

dsS y dt
dt

π= ∫
 

 

Example 19.6 We wish to find the area of a sphere for radius 0r > . 

 

Solution: we can view the sphere as the area of revolution of a circle for radius 

r , and to express the circle in parametric form,  

 

cos , sin ,0x r y rθ θ θ π= = ≤ ≤  

 

Then the formula gives  

 

2 2sin cos2 sin
0

r r dS r θ θ θ
π

π θ += ∫  

    
22 sin

0
dr θ

π
π θ= ∫  

   2

0
2 ( cos )r

π
π θ−=  

   24 rπ=  
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Exercises 

 

1. Find the volume of sphere of radius r .        

Find the volumes of revolution of the following: 

2. 1
cos

y
x

=  between 0x =  and 
4

x π
=       

3. siny x=  between 0x =  and 
4

x π
=       

4. The region between 2y x=  and 5y x=      

5. 2
x

y xe=  between 0x =  and 1x =       

6. Compute the volume of revolution of the curve 2

1y
x

= between 2x =  and 

x b= for any b>2. Does this volume approach a limit as b →∞ ? If yes, what 

limit ? 

 

Ans.: 1. 34
3

rπ , 2. π , 3. 
2

8 4
π π

− , 4. 
4

3
2.5 π

 
, 5. ( 2)eπ −  & 6. 324 3b

π π− , yes:  24
π  

 

Keywords: Lengths, area, volume, surface revolution, volume of chimneys 
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Module 2: Integral Calculus 
 

Lesson 20 

Double Integration 

 

20.1 Introduction 

In applications of calculus we have seen with integrals of functions of a single 

variable. The integral of a function y = f(x) over an interval [a, b] is the limit of 

approximating sums 

 

1
( ) lim ( )

nb

k ka n k
f x dx f c x

→∞
=

= ∆∑∫ ------------ (20.1) 

 

Where  0 1 2 1..... ,n k k ka x x x x b x x x+= ≤ ≤ ≤ ≤ = ∆ = −  and ck is the any point 

from the interval [xk, xk+1] . The limit in (20.1) is taken as the length of the longest 

subinterval approaches zero.  The limit is guaranteed to exist if  f  is continuous 

and also exists when f  is bounded and has only finitely many points of 

discontinuity in [a, b] . There is no loss in assuming the intervals [xk, xk+1] to have 

common length
b ax

n
−

∆ = , and limit may thus obtain by letting 0x∆ = as n →∞ . 

If  f(x) > 0, then ( )
b

a
f x dx∫   from x = a and x = b, but in general the integral has 

many other important interpretations (distance, volume, arc length, surface area, 

moment of inertia, mass, hydrostatic pressure, work) depending on the nature and 

interpretation of  f .  
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Double Integration 

In this Lesson we shall see that integrals of functions of two or more variables 

which are called multiple integrals and defined I much the same way as integrals of 

functions of single variable. 

 

Double Integrals: Here we define the integral of a function f(x, y) of two variables 

over a rectangular region in xy-plane. We then show how such an integral is 

evaluated and generalize the definition to include bounded regions of a more 

general nature.  

 

Double Integrals over Rectangles: 

 

 

 

 

 

 

 

 

 

Suppose that f(x, y) is defined on a rectangular region R defined by  

 : ,R a x b c y d≤ ≤ ≤ ≤  

(see the figure 1.) 

 

We imagine R to be covered by a network of lines parallel to x-axis and y-axis, as 

shown in Fig 1. These lines divide R into small pieces of area  

 

                                                                                                

a

 

b

 

c

 

d

 

x

 

y
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Double Integration 

A x y∆ = ∆ ∆  

 

We number these in some order 

  

1 2, ,...., nA A A∆ ∆ ∆ , 

 

Choose a point (xk, yk) in each piece of kA∆ and from the sum  

 

1
( , )

n

n k k k
k

S f x y A
=

= ∆∑ ------------------- (20.2) 

 

If  f  is continuous throughout R, then we define mesh width to make both x∆ and 

y∆  go to zero the sums in (2) approach a limit called the double integral of  f  over  

R that is denoted by  ( , ) ( , )
R R

f x y dA or f x y dx dy∫∫ ∫∫  

 

Thus 
0 1

( , ) lim ( , )
n

k k kA
R

f x y dA f x y A
∆ →

= ∆∑∫∫ ---------- (20.3) 

 

As with functions of a single variable, the sums approach this limit no matter how 

the interval [a, b] and [c, d] that determine R are subdivide, along as the lengths of 

the subdivisions both go to zero. The limit (20.3) is independent of the order in 

which the area kA∆  are numbered, and independent of the choice of ( , )k kx y  

within each kA∆ . The continuity of  f   sufficient condition or the existence of the 

double integral, but not a necessary one, and limit question exists for many 

discontinuous functions also. 
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Double Integration 

 

20.1.1 Properties of Double Integral 

Like “single” integrals, we have the following properties for double integrals of 

continuous functions which are useful in computations and applications. 

(i) ( , ) ( , )
R R

k f x y dA k f x y dA=∫∫ ∫∫  (any number k) 

(ii) [ ]( , ) ( , ) ( , ) ( , )
R R R

f x y g x y dA f x y dA g x y dA+ = +∫∫ ∫∫ ∫∫  

(iii) [ ]( , ) ( , ) ( , ) ( , )
R R R

f x y g x y dA f x y dA g x y dA− = −∫∫ ∫∫ ∫∫  

(iv) ( , ) 0 ( , ) 0
R

f x y dA if f x y on R≥ ≥∫∫  

(v)  ( , ) ( , ) ( , ) ( , )
R R

f x y dA g x y dA if f x y g x y on R≥ ≥∫∫ ∫∫  

(vi)  If 1 2 1 2,R R R R R=   , R is the union of two non-overlapping rectangles R1 

and R2, we have 

 

1 2 1 2

( , ) ( , ) ( , )
R R R R

f x y dA f x y dA f x y dA= +∫∫ ∫∫ ∫∫


 

 

Volume: When f(x, y) > 0, we may interpret  ( , )
R

f x y dA∫∫  as the volume of the 

solid enclosed by R, the planes x = a, x = b, y = c, y = d , and the surface z = f(x, 

y) see fig 2. 

Each term ( , )k k kf x y A∆ in the sum 
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1
( , )

n

n k k k
k

S f x y A
=

= ∆∑  is the volume of a vertical rectangular prism y  that  

       

                                                                             ( , )k kf x y  

                                                

 

                                                       •                    •                                                                                                                          

                                        •                         kA∆  

                                    

                               • 

 

 

 

approximate the volume of the portion of the solid that stands above the box - 

kA∆ . The sum Sn  thus approximates what we call the total volume of  the solid, 

and we define this volume to be  

Volume = lim Sn = ( , )
R

f x y dA∫∫  

 

20.1.2 Fubbin’s theorem for calculating double integrals: 

Theorem 20.1. (Fubbin’s theorem (1st  form)) 

If f(x, y) is continuous on the rectangular region : ,R a x b c y d≤ ≤ ≤ ≤ , then 

 

( , ) ( , ) ( , )
d b b d

R c a a c

f x y dA f x y dxdy f x y dydx= =∫∫ ∫ ∫ ∫ ∫  

 

y  

z  

x  

a  

b  

c  d  
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Fubbin’s theorem shows that double integrals over rectangles can be calculated as 

iterated integrals. This means that we can evaluate a double integral by integrating 

one variable at a time, using the integration techniques we already know for 

function of a single variable. 

 

Fubin’s theorem also says that we may calculate the double integral by integrating 

in either order (a genuine convenience). In particular, when we calculate a volume 

by slicing, we may use either planes perpendicular to the x-axis or planes 

perpendicular to y-axis. We get same answer either way. 

 

Even more important is the fact that Fubin’s theorem holds for any continuous 

function f(x, y). In particular it may have negative values as well as positive values 

on R, and the integrals we calculate with Fubin’s theorem may represent other 

things besides volumes. 

 

Example 20.1: Suppose we wish to calculate the volume under the plane z = 4-x-y 

over the region : 0 2, 0 1R x y≤ ≤ ≤ ≤  in the xy – plane. 

 

Solution: The volume under the plane is given by (4 )
R

x y dA− −∫∫ . 

Next we have to calculate the double integral. 

Now we will complete the stated example. 

 
1 2

0 0

( , ) (4 )
R

f x y dA x y dx dy= − −∫∫ ∫ ∫  
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21 2

0 0

4
2
xx xy dy

 
= − − 

 
∫  

( )
1

0

8 2 2y dy= − −∫  

( )
1

0

6 2y dy= −∫  

12

0
6 5y y= − =  

 

Example 20.2 Calculate ( , )
R

f x y dA∫∫  for  

2( , ) 1 6f x y x y= −   and  : 0 2, 1 1R x y≤ ≤ − ≤ ≤  

 

Solution: By Fubin’s theorem 

 
1 2

2

1 0

( , ) (1 6 )
R

f x y dA x y dx dy
−

= −∫∫ ∫ ∫  

                      ( )
21

3

1 1

2x x y dy
− −

= −∫  

                     ( )
1

1

2 16y dy
−

= −∫  

                     
12

1
2 8y y

−
= −  

                     (2 8) ( 2 8) 4= − − − − =  

 

Reversing the order of integration gives the same answer: 
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11 2 2

2 2 2

1 0 0 1

(1 6 ) 3x y dy dx y x y dx
− −

− = −∫ ∫ ∫  

                               
2

2 2

0

(1 3 ) ( 1 3 )x x dx = − − − − ∫  

                               
2

2 2

0

1 3 1 3y x dx = − + + ∫  

                               2

0
2 4x= = . 

 

20.1.2 How to determine the limits of Integration  

The difficult part of evaluating a double integral can be finding the limits of 

integration. But there is a procedure to follow: 

If we want to evaluate over a region R, integrating first with respect to y and then 

with respect to x, we take the following steps: 

1. We imagine a vertical Line L cutting through in the direction of increasing y  

2. We integrate from the y-value where L enters R to the y-value where L leaves R 

3. We choose x-limits that include all the vertical lines that pass through R  

 

Example 20.3 Change the order of integral 
211

0 1

( , )
y xx

x y x

f x y dy dx
= −=

= = −
∫ ∫  

To calculate the same double integral as an iterated integral with order of 

integration reversed consider (the figure), by using the above procedure, we have  
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Double Integration 

 

 

 

  

 

 

 

 

 
211

0 1

( , )
x y

x y

f x y dx dy
= −

= −
∫ ∫  

 

Example 20.4 Calculate 
sin

A

x dA
x∫∫  where A is the triangle in the xy-plane 

bounded by the x-axis, the line y = x and the line y = 1. 

 

Solution: 
1

0 0

sinx x dy dx
x

 
 
 
∫ ∫  

              
1

00

sin y x

y

x y dx
x

=

=

 
=   

 
∫  

                
1

1

0
0

sin cos cos1 .46x dx x= = − = − +∫   

If we reverse the order of integration and try to calculate  

x x 1 0 

L 

Biggest 
x = 1 

Leaves where 
y = 1- x2 

Smallest 
x = 0 

Leaves where 
y = 1- x 

y 

1 
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1 1

0

sin

y

xdx dy
x∫ ∫ , we can’t evaluate it because we can’t express 

sin x
x∫  in terms of 

elementary functions. 

 

PROBLEM  

 

Evaluate the following integrals and sketch the region over which each integration 

takes place. 

1. 
3 2 2

0 0
(4 )y dy dx−∫ ∫       

2. 
3 0 2

0 2
( 2 )x y xy dy dx

−
−∫ ∫      

3. 
0 0

sin
x
x y dy dx

π

∫ ∫       

4. 
sin

0 0

x
y dy dx

π

∫ ∫        

5. Find the value of the integral 
11

10 0

y xyye dx dy∫ ∫   

6. Sketch the region of integration of 
2

2 2

0

( , )
x

x

f x y dy dx∫ ∫ and express the integral as 

an equivalent double integral with order of integration. 

 

Ans.: 1. 16, 2. 0, 3. 
( )24

2
π+

, 4. 
4
π

, 5. 9 9e−  & 6.  

 

Keywords: Multiple Integrals, Double Integrals, Triple Integrals, Area, Volume 
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Module 2: Integral Calculus 
 

Lesson-21 

Triple Integration 

 

21.1 Introduction  

If F(x, y, z) is the function defined on a bounded region D in space (a solid ball 

or truncated cone, for example of something resembling a swiss cheese, or a 

finite union of such objects) then the integral of F over D defined in the 

following way. 

 

We partition a rectangular region about D into rectangular cells by planes 

parallel to the co-ordinate planes, as shown in Fig. 

 

The cells have dimensions x∆ by y∆  by z∆ . We number the cells that lie inside 

D in some order 1 2, ,......., nV V V∆ ∆ ∆ , 

choose a point ( , , )k k kx y z  in each kV∆ , and form the sum 

 

1
( , , )

n

n k k k k
k

S F x y z V
=

= ∆∑ ------------- (21.1) 

 

If F is continuous and the bounding surface of D is made of smooth surfaces 

joined along continuous curves, then as ,x y∆ ∆  and z∆ all approach zero the 

sum Sn will approach all limit. 

 

lim ( , , )n
D

S F x y z dV= ∫∫∫  

 

We call this limit the triple integral of F over D. The limit also exists for some 

discontinuous functions. 
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Triple Integration 
 

 

Triple integrals share many algebraic properties with double and single 

integrals. Writing F  by ( , , )F x y z  and G  for ( , , )G x y z , we have the following 

 

1. ( )
D V

k F dV k F dV any number k=∫∫∫ ∫∫∫  

2. ( )
D D D

F G dV F dV G dV± = ±∫∫∫ ∫∫∫ ∫∫∫  

3. 0 0
D

F dV if F in D≥ ≥∫∫∫  

4. 
D D

F dV G dV if F G on D≥ ≥∫∫∫ ∫∫∫  

 

If the domain D  of a continuous function F  is partitioned by smooth surface 

into a finite number of cells  1 2, ,...., nD D D  , then 

 

5. 
1 2

.....
nD D D D

F dV F dV F dV F dV= + + +∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫  

 

The triple integral Evaluation is hardly evaluated directly from its definition as a 

limit. Instead, one applies a three-dimensional version of Fubin’s theorem to 

evaluate the integral by repeated single integrations.  

 

For example, suppose we want to integrate a continuous function   F(x, y, z) 

over a region D that is bounded below by a surface z = f1(x, y) above by the 

surface   

z = f2(x, y) ,  and on the side by a cylinder C parallel to the  z – axis (Fig. 2). Let 

R denote the vertical projection of D onto the xy-plane enclosed by C. The 

integral of F over D is then evaluated as  
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Triple Integration 
 

 

 

 

  

 

 

 

 

 

2

1

( , )

( , )

( , , ) ( , , )
f x y

D R f x y

F x y z dV F x y z dz dy dx
 
 =
 
 

∫∫∫ ∫∫ ∫  

or 
2

1

( , )

( , )

( , , ) ( , , )
f x y

D R f x y

F x y z dV F x y z dz dy dx=∫∫∫ ∫∫ ∫ -------------- (21.1) 

 

If we omit the parenthesis .The  z-limits of integration indicate that for every  

(x, y) in the region R, z may extend from the lower surface z = f1(x, y)  to the 

upper surface z = f2(x, y). The y – and x - limits of integration have not given 

explicitly in Eq (21.1) but are to be determined in the usual way from the 

boundaries of  R. 

 

We will find the equation of the boundary of  R by eliminating  z between the 

two equations z = f1(x, y)  and  z = f2(x, y). This gives  

 

f2(x, y) = f1(x, y), 

 

an equation that contains no z and that defines the boundary of  R in the xy - 

plane. 

z 

x 

y 

C 

R 

z = f2(x, y) 

z = f1(x, y) 

Fig.12 
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Triple Integration 
 

To give the z -limits of integration in any particular instance we may use a 

procedure like the one for double integrals. We imagine a line L through a point 

(x, y) in R and parallel to the z-axis. As z increases, the line enters D at z = f1(x, 

y) and leaves D at z = f2(x, y).  These give the lower and upper limits of the 

integration with respect to z . The result of this integration is now a function of  

x and  y alone, which we integrate over R, giving limits in the familiar way.  

 

 

 

 

 

 

 

 

 

Example 21.1 Find the volume enclosed between the two surfaces z = x2+3y2  

and  

 z = 8-x2-y2.  

 

Solution: The two surfaces intersect on the surface   

 

x2+3y2  = 8-x2-y2  

        or x2+2y2  = 4 

 

which is elliptic . 

So the volume of the surface is 

 

Leaves D at z = f2(x, y) 

Enters D at z = f1(x, y) 

Fig. 12 
 

R 
 

 
(x, y) 
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Triple Integration 
 

2 2 2

2 22

(4 )/2 82

2 3(4 )/2

x x y

x yx

V dz dy dx
− − −

− +− −

= ∫ ∫ ∫  

( )
2

2

(4 )/22
2 2 2 2

2 (4 )/2

8 3
x

x

x y x y dy dx
−

− − −

= − − − −∫ ∫  

( )
2

2

(4 )/22
2 2

2 (4 )/2

8 2 4
x

x

x y dy dx
−

− − −

= − −∫ ∫  

( )
2(4 )/22

2 2

2 0

2 8 2 4
x

x y dy dx
−

−

= − −∫ ∫  

2(4 )/22
2 3

2 0

42 (8 2 )
3

x

x y y dx
−

−

 = − − 
 ∫  

( )
3

2 2 2
2

(4 ) (4 )2
2 2

2

82(8 2 )
3

x xx dx− −

−

 = − − 
 ∫  

( )
3
22

2

2

4 2 4
3

x dx
−

= −∫  

( )
3
22

2

0

8 2 4
3

x dx= −∫  

8 2π=  

 

As we know, there are sometimes two different orders in which the single 

integrations that evaluate a double integral may be worked (but not always). For 

triple integral there are sometimes (but not always) as many as six workable 

orders of integration. The next example shows an extreme case in which all six 

are possible. 

 

Example 21.2 Each of the following integrals gives the volume of the solid 

shown  
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Triple Integration 
 

 in Fig 3. 

 

 

                                                                              

 

 

 

Fig 3. 

 
1 1 2

0 0 0

( )a dxdy dz∫ ∫ ∫    
11 2

0 0 0

( )
y

b dxdz dy
−

∫ ∫ ∫  

1 1 1

0 0 0

( )
z

c dy dxdz
−

∫ ∫ ∫    
2 1 1

0 0 0

( )
z

d dy dz dx
−

∫ ∫ ∫  

11 2

0 0 0

( )
y

e dz dxdy
−

∫ ∫ ∫    
12 1

0 0 0

( )
y

f dz dy dx
−

∫ ∫ ∫  

 

EXERCISES 

 

1. Write six different iterated triple integrals for the volume of the rectangular 

solid in the first octant bounded by the co-ordinate planes and the planes x = 1, 

y = 2, 

 z = 3. Evaluate one of the integrals. 

 

2. Write six different intersected triple integrals of the volume in the first octant 

enclosed by the cylinder x2 + z2 = 4 and the plane y = 3. Evaluate one of the 

integrals.  

 

x 

z 

y 
y + z =1 

2 
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Triple Integration 
 

3. Write an iterated triple integrals in the order dz dy dx for  the volume of the 

region bounded below by the xy-plane and above by the paraboloid z = x2+ y2 

and lying inside the cylinder x2 + y2 = 4. 

 

4. Rewrite the integral  
2

11 1

1 0

y

x

dz dy dx
−

−
∫ ∫ ∫  as an equivalent integrated integral in the 

order. 

a) dy dz dx    b) dy dx dz     c) dx dy dz     d) dx dz dy     e) dz dx dy 

 

Ans.: 1.
1 2 3 2 1 3 3 2 1 3 1 2 2 3 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

, , , ,dz dy dx dz dxdy dxdy dz dy dxdz dxdz dy∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ , 

the value of each integral is 3, 2. 
2 2 23 2 4 2 3 4 2 4 3

0 0 0 0 0 0 0 0 0

, ,
x x x

dz dxdy dz dy dx dy dz dx
− − −

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ , 

2 2 22 1 3 3 2 4 2 3 1

0 0 0 0 0 0 0 0 0

, ,
z z x

dy dz dx dxdz dy dxdy dz
− − −

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ . Value of each integral is 

12π .  

3. 
2 222 1

0 0 0

4
x yx

dz dy dx
+−

∫ ∫ ∫  & 4.  

 

Keywords: Triple integral, Fubini’s theorem, volume 
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Module 2: Integral Calculus 
 

Lesson 22 

Area & Volume using Double and Triple Integration 

 

22.1 Introduction 

We have seen if we take f (x, y) = 1 in the definition of the double integral over 

a region in Eqn (20.2), is the partial sum reduce to  

 

1 1
( , ) ,

n n

n k k k k
k k

S f x y A A
= =

= ∆ = ∆∑ ∑  

 

and give area of the  region as n →∞  . In that case  ,x y∆ ∆  approach zero. In 

this case we define the area on a rectangular region R to be the limit  

 

lim k
R

Area A dA= ∆ =∑ ∫∫                   (22.1) 

 

Example 22.1 Find the area of the region R bounded by y = x and y = x2 in the 

first quadrant. 

 

Solution: The area of the region is  

 

2

1 1
2

0 0

( )
x

x

dy dx x x dx= −∫ ∫ ∫  

               
62 3

0

1
2 3 6
x x

= − =  

  

Example 22.2 Find the area of the region R enclosed by the parabola y = x2 and 

the line y = x + 2. 

www.AgriMoon.Com205



Area & Volume using Double and Triple Integration 

 

Solution: 2 22 2 0x x x x= + ⇒ − − =  

                 2 2 2 0 . ., ( 2) 1( 2) 0x x x i e x x x− + − = − + − =  

                 ( 1)( 2) 0x x+ − =  

                  1,2x = −  

 

Hence the area 
2

2 2

1

x

x
A dy dx

+

−
= ∫ ∫  

2

22

1

x

x
y dx

+

−
= ∫  

2 2

1
( 2 )x x dx

−
= + −∫  

22 3

1

2
2 3
x xx

−

= + −  

8 1 12 4 2
3 2 3

   = + − − − +   
   

 

8 1 12 4 2
3 2 3

= + − − − +  

16 3 28
6
+ +

= −  

7 98
2 2

= − =  

 

Solution:  

For order of integration reversed, draw a horizontal lin L2. It enters at 
2
yx = , 

leaves at x y= . To include all such lines we let y to n from y = 0 to        y = 

4. The integral is  
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Area & Volume using Double and Triple Integration 

2

4

0
( , )y

y
f x y dx dy∫ ∫  

 

22.1.1 Changing to Polar Coordinates.  

When we define the integral of a function f(x, y) over a region R we divide R  

with rectangles, and their areas easy to compute. But when we work in polar 

coordinates, however it is more natural to subdivide R into ‘polar rectangles’ we 

can find the double integral in polar form as. 

2

1

( )

( )

( , ) ( , )
r f

r f

F r dA F r r dr d
θθ β

θ α θ

θ θ θ
==

= =

=∫∫ ∫ ∫  ------------ (22.2) , give running numbers. 

 

Where the function ( , )F r θ  is defined over a region R bounded by the areas 

,θ α θ β= =  and the continuous curve  1 2( ) , ( )r f r fθ θ= = . 

 

If ( , ) 1F r θ ≡  the constant function whose value is one, then the value over R is 

the areas of  R (which agrees our earlier definition).  Thus 

Area of  R = 
R

r dr dθ∫∫  

 

Example 22.3 Find the area enclose by the lemniscate  2 22 cos2r a θ= . 
                                                       

 

 

 

 

- 4π  

 

 

4π  
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Area & Volume using Double and Triple Integration 

The area of the right-hand half to be  

 
22

4 4

4 4

2 cos 22 cos 2 2

0 02

r aa

r

rr dr d d
π π

π π

θθ

θ θ
=

− − =

=∫ ∫ ∫  

                                        
4

4

2 cos2a d
π

π

θ θ
−

= ∫  

                                        
4

4

2

sin 2
2
a

π

π

θ
−

=  

                                        
2

[1 ( 1)]
2
a

= − −  

                                        2a=  

 

The total area is therefore 2a2. 

 

22.2 Volume using Triple Integral 

If ( , , ) 1F x y z ≡  is the constant function whose volume is one, then the sums in 

Eq (1) reduce to 
1 1
1.

n n

n K K
k k

S V V
= =

= ∆ = ∆∑ ∑  

As , ,x y z∆ ∆ ∆  all approaches zero, the cells kV∆  become smaller and we need 

more cells to fill up D. We therefore define the volume of  D to be the triple 

integral of the constant function f(x, y, z) = 1 over D. 

 

Volume of D = 
1

lim
n

k
k D

V dV
=

∆ =∑ ∫∫∫ . 
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Area & Volume using Double and Triple Integration 

The triple integral Evaluation is hardly evaluated directly from its definition as a 

limit. Instead, one applies a three-dimensional version of Fubin’s theorem to 

evaluate the integral by repeated single integrations.  

 

22.3 Integrals in Cylindrical and Spherical Coordinates  

 

                                                                    .  

                                                                                             . 

                                                     .                                                           

                                                                   Fig. 4 

 

 Fig. 4 shows a system of mutually orthogonal coordinates axes OX, OY, OZ. 

The Cartesian coordinates of a point P(x, y, z) in the space may be read from the 

coordinates axes by passing planes through P perpendicular to each axis. The 

points on the x-axis have their y- and z- ordinates both zero. Points in a plane 

perpendicular to the z-axis, say, all have the same z - coordinate. Thus of the 

points in the plane perpendicular to the z- axis and 5 units above the  xy-plane 

all have coordinates of the form (x,y,5) . We can write z = 5 as an evaluation for 

this plane. The three planes x = 2, y = 3, z = 5 intersect in the point P (2, 3, 5). 

The points of the yz- plane are obtained setting x = 0. The three coordinates 

planes      x = 0, y = 0, z = 0 divide the space into eight cells, called octants. The 

octant in which all three coordinates are positive is the first octant, but there is 

no conventional numbering of the remaining seven octants.  

 

Example 2. Describe the set of points P(x, y, z) whose Cartesian coordinates 

satisfy the simultaneous equation  x2 + y2 = 4, z = 3.  

 

    Z 

(0,0,c) 

(0,b,0) (a,0,0) 

Y 

X 
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Area & Volume using Double and Triple Integration 

Solution: The points all   horizontal plane z = 3, and in this plane they lie in this 

cirle x2 + y2 = 4.Thus we may describe the set of the circle in the plane x2 + y2 = 

4 in the plane z = 3. 

 

22.3.1 Cylindrical Coordinates 

It is frequently convenient to use cylindrical coordinates ( , , )r zθ to locate a 

point in space. These are just the polar coordinates ( , )r θ  used instead of (x, y) 

in the plane z = 0, coupled with the z- coordinates. Cylindrical and Cartesian 

coordinate are therefore related by the following equations : Equations relating 

cartesian and cylindrical coordinates.  

 

cosx r θ=                          2 2r x y= +  

siny r θ=                          tan y
x

θ =  

                                                 z z=  
 

22.3.2 Spherical Coordinates 

Spherical coordinates are useful when there is a center of symmetry that we can 

take as the origin. The spherical coordinates ( , , )ρ ϕ θ are shown the first 

coordinates OPϕ =   is the distance from the origin to the point. It is never 

negative. The equation ϕ = constant describes the surface of the sphere of radius 

ϕ   with centre O.  

 

 

 

 

 

( , , )P ρ θ φ  

y 

z 

θ  

φ  ρ  

x 
www.AgriMoon.Com210



Area & Volume using Double and Triple Integration 

 

 

 

The second spherical coordinate φ , is the angle measured down  from the z-axis 

to the line OP. The equation ρ = constant describes cone with vertex at O, axis  

OZ and generating angle φ , provide we broaden our interpretation of the word 

“cone” to include the  xy- plane for which 
2
πφ =  and cones the generation 

angles greater than 
2
π . 

 

The third spherical coordinates θ  is the same as the angle θ  in cylindrical 

coordinates, namely, the angle from the xz-plane the  plane through P and the z-

axis.  

 

22.3.3. Coordinate Conversion Formulas 

We have the following relationships between these Cartesian (x, y, z), 

cylindrical ( , , )r zθ , and spherical ( , , )ρ ϕ θ  

Polar to Rectangular Spherical to Cylindrical  Spherical to 

Rectangular 

cosx r θ=    sinr ρ φ=     sin cosx ρ φ θ=  

siny r θ=    cosr ρ φ=     sin siny ρ φ θ=  

z z=     θ θ=      cosz ρ θ=  

Volume : 2 sindxdy dz dz rdr d d d dθ ρ θ ρ φ θ= =∫∫∫ ∫∫∫ ∫∫∫  
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Area & Volume using Double and Triple Integration 

Exercises 

1. Find the area of the region R enclosed by the parabola y = x2 and the line y = 

x +1 

2. Find the area of the region R bounded by y = x and 2x y=  in the first 

quadrant. 

3. Find the volume of the solid in the first octant bounded by the paraboloid.  

 z = 36 – 4x2 – 9y2        

4.  Find the volume of the solid enclosed between the surfaces  x2 + y2 = 92 and 

x2 + z2 = 92 .          

5. The volumes of the tetrahedron bounded by the plane 1x y z
a b c
+ + =  and the 

coordinate planes.         

6. The volume in the first octant bounded by the planes x + z = 1, y + 2z = 2. 

  

7. The volume of the wedge cut from the cylinder x2 + y2 = 1 and  the plane z = 

y above and plane below.        

8. The volume of the region in the first octant bounded by the  coordinate 

planes, above by the cylinder  x2 + z = 1 and on the right by the paraboloid  y =  

x2 + z2  

(Hint: Integrate first with respect to y)    

 

Ans.: 1.   ,2.   , 3. 27π , 4. 
316

3
a

, 5. 
1
6

abc , 6. 2
3

, 7. 2
3

  &  8. 2
7

 

 

Keywords: Area, Volume, Double Integral, Triple Integral 
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Module 2: Integral Calculus 

Lesson 23  

Gamma Function    

 

23.1 Introduction: We shall define a function known as the gamma function, 

( )xΓ  which has the property that ( ) ( 1)!n nΓ = −   for every positive integer n. It 

may be regarded then a generalization of factorial n to apply to values of the 

variable which are not integer. The function is defined in terms of an improper 

integral. This integral cannot be evaluated in terms of the elementary functions. 

It has great importance in analysis and in applications. 

 

Definition 23.1 The Gamma Function: The gamma function is defined by the 

improper integral 

  

( )
0

1 te t dtλλ
+∞ −Γ + = ∫ ------------- (23.1) 

 

which converges for all 1λ > −  

 

To deduce some of the properties of the gamma function, let us integrate Eq. 

(23.1) by parts: 

 

0 0
lim

Rt t

R
e t dt e t dtλ λ+∞ − −

→+∞
=∫ ∫  

                          
0 0

lim
RRt t

R
e t e t dtλ λλ− −

→+∞

 = − +  ∫  

                         1

0
lim 0 t

RR

R e t dt
e

λ
λλ

+∞ − −

→+∞

 −
= + + 

 
∫  

                        1

0

te t dtλλ
+∞ − −= ∫  
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Gamma Function    

i.e. ( 1) ( )λ λ λΓ + = Γ ------------ (23.2) 

 

If we let  0λ =  in Eq 1. these results 

 

00
(1) 1t te dt eλ

∞ ∞− −Γ = = − =∫  

 

Using Eq 23.2, we obtain 

 

(2) 1. (1) 1Γ = Γ =  

(3) 2. (2) 2!Γ = Γ =  

(4) 3. (3) 3!Γ = Γ =  ------------ (23.3) 

 

The equations above represent another important property of the gamma 

function. 1 λ+   is a positive integer. 

 

( 1) !λ λΓ + =  ------------ (23.4) 

 

It is interesting to note that ( )λΓ  is defined for all λ  except 

0, 1, 2,......λ = − − by the functional equation ( 1) ( )λ λ λΓ + = Γ ; infact, we need 

to know ( )λΓ  only for 1 2λ≤ ≤   to compute ( )λΓ  for all real values of λ . Fig 

1. Illustrates the graph ( )λΓ  
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Gamma Function    

 

 

 

 

 

     

 

 

 

 

                                     Fig 1.                             ( )λΓ  the Gamma function 

                                              

Certain constants related to ( )xΓ . We shall show that ( )1
2 πΓ =  . In order to 

do this, we compute first the so-called probability integral. 

 

Theorem 23.1. 
2

1
20

xe dx π
+∞ − =∫  

To prove this, consider the double integral of 
2 2x ye− − over two circular sectors D1 

and D2 and the Square S indicated in Fig 2. 

Since the integral is positive, we have 

1 2D S D

< <∫∫ ∫∫ ∫∫   (24.1.5) 

            

 

 

 

 

     Fig 2. 

 

y (R,R) 

(R,0) (R 2 ,0) 

   S 
D1 

      O       x 

D2 

1 2 3 4 -4 -2 -3 -1 
x 

y 
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Gamma Function    

Now evaluate these integrals by iterate integrals, the centre one in rectangular 

coordinates, and other two in polar coordinates: 

 
2 2 2 22 22

0 0 0 0 0 0

R R R Rr x y re r dr d e dx e dy e r dr d
π π

θ θ− − − −< <∫ ∫ ∫ ∫ ∫ ∫  

( ) ( ) ( )2 2 2
2

2

0
1 1

4 4
RR x Re e dx eπ π− − −− < < −∫  

 

Now let R →∞ , then  

 

( )2
2

0 4
xe dx π+∞ − =∫  

i.e., 
2

0 2
xe dx π+∞ − =∫   

 

Theorem 23.2. 1
2

π Γ = 
 

 

Now, 
1 1
2 21

0 0

1
2

t te t dt e t dt
+∞ +∞− −− − Γ = = 

  ∫ ∫  

                                                              
2

0
2 ye dy π

+∞ −= =∫    set t = y2 

 

Example 23.1 Evaluate the integral 
5
4

0

xx e dx
+∞ −∫  

 

Solution: Set x = t2, dx = 2tdt  

 
5 7
4 2 9

20 0
2 2 ( )x tx e dx t e dt

+∞ +∞− −= = Γ∫ ∫  
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Gamma Function    

From the recursive relation (2) , we obtain 

 

9 3
2 2

7 5 3 105( ) . . ( )
2 2 2 8 2

π
Γ = Γ =  

 

Finally, the volume of the integral is  

 

5
4

0

105 1052
8 2 8

xx e dx π π+∞ − = × × =∫  

 

Example 23.2 Express the product 

( ) ( )( 2 ).......[ ( 1) ]f r r r h r h r n h= + + + −  as a quotient of gamma functions. 

 

Solution: We have 

 

( ) 1 2 ..... ( 1) nr r r rf r n h h
h h h h

     = + + + −     
     

 

            
( )
( )

( )
( )

( )
( )

1 2
....

1 1

r r r
h h hn

r r r
h h h

n
h

n
Γ + Γ + Γ +

=
Γ Γ + Γ + −

 

             
( )
( )

.
r
h n

r
h

n
h

Γ +
=

Γ
 

 

obtained by the recursion Eq. 2 with 
r
h

λ =  

 

Some special cases of the result of Example 2 are interesting. For particular 

case, set r = 1 and h = 2. Then 
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Gamma Function    

1
2

1
2

2 ( )1.3.5....(2 1)
( )

n nn Γ +
− =

Γ
 

 

But 31
2 2

1 ( ) ( )
2 2

π
Γ = Γ = .  

 

Hence  

 
1
22 ( )1.3.5....(2 1)

n nn
π

Γ +
− =  

 

However,  

 

2.4.6.....21.3.5....(2 1) 1.3.5....(2 1)
2.4.6.....2

nn n
n

− = −  

                          
(2 )!

2 !

n
n n

=  

 

Now combining the two equations above , we get  

 

( )1
2

(2 )! (2 )!
22 ! 2 2 !

n nn n n nn n

π πΓ + = × =  

 

for  n = 1, 2, …… 

Other expressions for ( )xΓ  

 

Theorem 23.3. ( ) 1

0

, 0, 0x rt xx r e t dt r x
+∞

− −Γ = > >∫  
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Gamma Function    

This follows from the definition  

( ) 1

0

,t xx e t dt set rt y
+∞

− −Γ = =∫  

 

Theorem 23.4. ( ) 2 2 1

0

2 t xx e t dt
+∞

− −Γ = ∫  

 

Proof: Set  t2 = y 

Extension of definition  

Definition : For n =1,2,…. 

 

( ) ( )
( 1)( 2).....( 1)

x n
x

x x x x n
Γ +

Γ =
+ + + −

, 1n x n− < < − +  

 

Thus we have defined ( )xΓ  for all x except x = 0,-1,-2,…. Observe that when 

 n =1 the right hand side of (6) depends on the values of ( )xΓ  in the interval 

0<x<1. It is clear that ( )xΓ  has been defined for negative x in such a way that 

equation  

 

( ) ( )1x x xΓ + = Γ for 0, 1, 2,....x ≠ − − ---------(23.6) 

 

Example 4. Compute ( )1
2Γ  

From  equation (7), we have  

 

( ) ( )1 1 1
2 2 21Γ − + = − Γ −  
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Gamma Function    

i.e., ( ) ( )1 1 1
2 2 2Γ = − Γ −  

i.e., ( )1
2 2 πΓ − = −  

 

Exercise 

 

Evaluate each integral 

1.  
0

xx e dx
+∞

−∫       

2.  
22

0

xx e dx
+∞

−∫       

3.  4

0

xx e dx
+∞

− −∫       

4.  3

0

(1 ) xx e dx
+∞

−−∫      

5.  3

0

xx e dx
+∞

−∫       

6. Show that the improper integral 
0

t xe t dt
+∞

−∫  converges for 1x > − and diverges 

for 1x ≤ −  . 

7. Compute 
1

1
0 ln ( )x

dx
x∫                               

8. Evaluate 
29

0

2 x dx
∞

−∫  using gamma function ( Hint : 
2 29 92 ln 2x xe− −= )  
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Gamma Function    

Ans.:  1. ( )3
2 2

or π
Γ , 2. 6, 3. ∞ , 4.  -9394, 5. 2 7!× , 6.   ,7. 2π  & 8. 

1
6 ln 2

π
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Module 2: Integral Calculus 

Lesson 24 

The Beta Function 

 

24.1 Introduction 

In this Lesson we shall introduce a useful function of two variables known as 

beta function. Its usefulness is considerably overshadowed by that of gamma 

function. In fact, we shall show that it can be evaluated in terms of the latter 

function. As consequence, it would be unnecessary to introduce it as a new 

function.  Since it occurs so frequently in analysis, a special designation for it is 

accepted. 

 

Definition 2.2 

For x, y positive we define the Beta function by  

 

 
 

Using the substitution u = 1 - t it is easy to see that  

 

Theorem 24.1.  

Here we say the beta function is symmetric. 

 

To evaluate the Beta function we usually use the Gamma function. To find their 

relationship, one has to do a rather complicated calculation involving change of 

variables (from rectangular into tricky polar) in a double integral.  

 

When x and y are positive integers, it follows from the definition of the gamma 

function that: 
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The Beta Function 

 

 
 

Theorem 24.2.  For  0 ,0x y< < ∞ < < ∞ ,  

 

                              ( ) ( )2 1 2 1

0
( , ) sin cosx yx y t t dtβ

∞ − −

+
= ∫  

 

To prove this set 2sint u=  in the integral. 

 

 
 

Theorem 24.3. For  0 ,0x y< < ∞ < < ∞ ,  

 

                              
( )

1

0
( , )

1

x

x y

tx y dt
t

β
−

∞

++
=

+∫
 

 

Here the change of variable 1(1 )t u u −= + suffices. 

 

It has many other forms, including: 

 

Theorem. For 0 ,0x y< < ∞ < < ∞  
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Proof : When x  and y  are arbitrary positive numbers, the proof proceeds as 

follows. From the double integral of the nonnegative function 2 22 1 2 1x y t ut u e− − − −  

over the three regions 1 2,D D and S of figure 1 of Lesson 23. Now, however,  t  

and u are the variables, however, t and u are the variables x  and y  positive 

constants. We have relation (23.5) of Lesson 23 as before.  Again we evaluate 

the central double integral by iteration in rectangular coordinates: the other two, 

in polar coordinates: 

 
2 2 22

2 2 1 2 1
2 1 2 1 2 1

0 0 0 0
cos sin

x y yR R Rx y r x t ud e r dr t e dt u e du
π

θ θ θ
+ − −

− − − − − −<∫ ∫ ∫ ∫  

22
2 2 122 1 2 1

0 0
cos sin

x yRx y rd e r dr
π

θ θ θ
+ −

− − −< ∫ ∫  

 

Now, if we let R become infinite and use Theorems 23.4 and 24.3, we obtain 

 

1 1 ( ) ( )( , ) ( ) ,0 , 0
2 2 2 2

x yB y x x y x yΓ Γ
Γ + = < <  

 

This completes the proof of the theorem. 

 

Example 24.1 Evaluate 1 4 3

0
(1 )x x dx−∫  

 

Solution: 1 4 3

0
(1 )x x dx−∫ = 1 5 1 4 1

0
(1 )x x dx− −−∫

(5) (4) 1(5,4)
(9) 280

B Γ Γ
= = =

Γ
 

 

Example 24.2 Evaluate 
1

0 23

1
(1 )

dx
x x−

∫  
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Solution: 
1

0 23

1
(1 )

dx
x x

=
−

∫
2

1 3
3

1 211 1 3 31 2 1 2
3 3 3 30

( ) ( )(1 ) ( , ) ( ) ( )
(1)

x x dx β
−

− Γ Γ
− = = = Γ Γ

Γ∫   

 

Example 24.3 Evaluate  1

0
.(1 )x x dx−∫  

 

Solution: 
3 1
21 1 2 1

0 0
(1 ) (1 )x x dx x x dx

−
−− = −∫ ∫ = ( ) ( ) ( )

( )
3
23

2 7
2

2
,2β

Γ Γ
=

Γ
 

( )3 1
2 2 πΓ =  

( )5 3
2 4 πΓ =  

( )7 15
2 8 πΓ =  

Thus 
1

0

4.(1 )
15

x x dx− =∫  

 

Example 24.4 Given   , show that   

 

Proof: We know, 

for   

     

 

                                       = ( ) (1 )q qΓ Γ −  

 

Example 24.5 Evaluate   

 

Solution: Let   
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Exercises 

1.   

2.   

3.   

4.   

5.   

6.   

7.   

8.   

9.                

 

Keywords: Gamma Function, Beta Function, Polar Coordinate. 
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Module 3: Ordinary Differential Equations

Lesson 25

Introduction

In this lesson we introduce basic concepts of theory of ordinary differential equations.

Formation of the differential equation from a given family of curves is explained. Differ-

ent types of solutions are defined. The given definitions are supplemented by some simple

examples.

25.1 Differential Equations

An equation involving derivatives or differentials of one or more dependent variables with

respect to one or more independent variables is called a differential equation. An ordinary

differential equation of ordern is defined by the relation

F (t, x, x(1), x(2), . . . , x(n)) = 0 (25.1)

wherex(n) stands for thenth derivative of unknown functionx(t) with respect to the

independent variablet. For example

d4x

dt4
+

d2x

dt2
+

(

dx

dt

)5

= et (25.2)

dx

dt
= x+ sin x. (25.3)

25.1.1 Order of a Differential Equation

The order of a differential equation is referred to the highest order derivative involved in

the differential equation. For example, the order of the differential Equation (25.2) is four.

25.1.2 Degree of Differential Equation

The degree of a differential equation is the degree of the highest order derivative which

occurs in it; after the differential equation has been made free from radicals and fractions

as far as derivatives are concerned, e.g. in differential Equation (25.2), the degree is one.
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25.1.3 Linear and Nonlinear Differential Equation

A differential equation is called linear if (a) every dependent variable and every derivative

involved occurs in first degree only, and (b) no product of dependent variables and/or

derivatives occur. A differential is not linear is called nonlinear. For examples, Equation

(25.2) is linear and (25.3) is nonlinear.

25.2 Solution of a Differential Equation

Any relation between the dependent and independent variables, when substituted in the

differential equation, reduces it to an identity is called asolution of differential equation.

For example,y = e2x is a solution ofy′ = 2y.

25.2.1 Example

Show thaty = A/x+B is solution of

y′′ +

(

2

x

)

y′ = 0

Solution: We have the differential equation

y′′ +

(

2

x

)

y′ = 0. (25.4)

Also given that

y = A/x+B. (25.5)

Differentiating (25.5) w.r.t.x

y′ = −A/x2. (25.6)

Differentiating (25.6) w.r.t.x

y′′ = 2A/x3. (25.7)

Substituting (25.6) and (25.7) into (25.4), we have

2A

x3
−

2A

x3
= 0.
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25.2.2 Complete, Particular and Singular Solutions

Let

F (t, x, x(1), x(2), . . . , x(n)) = 0 (25.8)

be ann-th odder differential equation.

• A solution of (25.8) containingn independent constants is calledgeneral solution.

• A solution of (25.8) obtained from a general solution by giving particular value to

one or more of then independent arbitrary constants is calledparticular solution.

• A solution which cannot be obtained from any general solution by any choice of the

n independent arbitrary constants is calledsingular solution.

25.3 Formation of Differential Equations

An n-parameter family of curves is a set of relations of the form{(x, y) : f(x, y, c1, c2, ..., cn) =

0}, wheref is real valued function ofx, y, c1, c2, ..., cn and eachci (i = 1, 2, ...n) ranges over

an interval of real values.

Suppose we are given a family of curves containingn arbitrary constants. Then by differ-

entiating it successivelyn times and eliminating all arbitrary constants from the(n + 1)

equations we obtain annth order differential equation whose solution is the given family

of curves. We now illustrate the procedure of forming differential equations with the help

of some examples.

25.4 Example Problems

25.4.1 Problem 1

Find the differential equation of the family of curvesy = emx, wherem is an arbitrary

constant.

Solution: We have the family of curves

y = emx. (25.9)
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Differentiating (25.9) w.r.tx, we get

y′ = memx. (25.10)

Now, we eliminatem from (25.9) and (25.10) and usingm = loge y, we obtain the required

differential equation as

y′ = y loge y.

25.4.2 Problem 2

Obtain the differential equation satisfied by the family of circlesx2 + y2 = a2, wherea is

an arbitrary constant.

Solution: The family of circles is given as

x2 + y2 = a2. (25.11)

Differentiating (25.11) w.r.tx, we get

x+ yy′ = 0,

which is the required differential equation.

25.4.3 Problem 3

Obtain the differential equation satisfied byxy = aex + be−x + x2, wherea andb are an

arbitrary constant.

Solution: Given family of curves

xy = aex + be−x + x2. (25.12)

Differentiating (25.12) w.r.tx, we get

xy′ + y = aex − be−x + 2x, (25.13)

Differentiating (25.14) w.r.tx and using (25.14), we get

xy′′ + 2y′ = (xy − x2) + 2, (25.14)

which is the required differential equation.
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Remark: From the above examples we observed that the number of arbitrary con-

stants in a solution of a differential equation depends uponthe order of the differential

equation and is the same as its order. Hence a general solution of annth order differential

equation will containn arbitrary constant.
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Module 3: Ordinary Differential Equations

Lesson 26

Differential Equation of First Order

In this lesson we present solution techniques of differential equations of first order and

first degree. We shall mainly discuss differential equationof variable separable form,

homogeneous equations and equations reducible to homogeneous form.

There are two standard forms of differential equations of first order and first degree,

namely,

dy

dx
= f(x, y) or Mdx+Ndy = 0

HereM andN are functions ofx andy, or constants. We discuss here some special forms

of these equations where exact solution can easily be obtained.

26.1 Separation of Variables

If in a differential equation, it is possible to get all the functionsx anddx to one side and

all the functions ofy anddy to the other, the variables are said to be separable. In other

words if a differential equation can be written in the formF (x)dx + G(y)dy = 0, we say

variables are separable and its solution is obtained by integrating the equation as
∫

F (x)dx+

∫

G(y)dy = c,

wherec is a integration constant.

26.2 Example Problems

26.2.1 Problem 1

Solve
dy

dx
= ex+y + x2ey.

Solution: For separating variables, we rewrite the given equation as

e−ydy = (ex + x2)dx.
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Integrating the above equation we have

−e−y = ex + x3/3 + c,

wherec is an arbitrary constant.

26.2.2 Problem 2

Solve 3ex tan ydx+ (1− ex) sec2 ydy = 0.

Solution: Separating the variables, we get

3ex

1− ex
dx+

sec2 y

tan y
dy = 0.

Integration gives

−3 log(1− ex) + log(tan y) = log c,

wherec is an arbitrary constant.

26.3 Equations Reducible to Separable Form

Differential equation of the form

dy

dx
= f(ax+ by + c) or

dy

dx
= f(ax+ by)

can be reduced by the substitutionax+ by+ c = v or ax+ by = v to an equation in which

variables can be separated.

26.3.1 Example

Solve
dy

dx
= sec(x+ y).

Solution: Let, x+ y = v so that

dy

dx
=

dv

dx
− 1. (26.1)

Using (26.1), the given differential equation becomes

dv

dx
= sec v + 1. (26.2)
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This equation is of separable form. Thus we have

dx =
1

sec v + 1
dv ⇒ dx =

2 cos2(v/2)− 1

1 + 2 cos2(v/2)− 1
dv

Further simplifications gives

dx =

(

1−
1

2
sec2(v/2)

)

dv

Integrating and substituting the value ofv, we obtainy − tan 1
2(x+ y) = c.

26.4 Homogeneous Differential Equation

A differential equation of first order and first degree is saidto be homogeneous if it can

be put in the form
dy

dx
= f(y/x).

These equations can be solved by lettingy/x = v and differentiating with respect tox as

v + x
dv

dx
= f(v) ⇒ x

dv

dx
= f(v)− v.

Then, separating variables, we have

dx

x
=

dv

f(v)− v

Integrating the above equation we obtain

log x+ c =

∫

dv

f(v)− v
,

wherec is an arbitrary constant. The solution is obtained by replacing variablev by y/x.

26.4.1 Example

Solve the differential equation
dy

dx
=

y

x
+ tan

(y

x

)
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Solution: Since the right hand side of the given equation is function ofy/x alone, the

given problem is homogeneous equation. Substitutingy/x = v so that

dy

dx
= v + x

dv

dx
(26.3)

the given equation becomes

v + x
dv

dx
= v + tan v →

dx

x
=

cos v

sin v
dv

Integrating and substituting the value ofv, we get the solution as

cx = sin
(y

x

)

,

wherec is an arbitrary constant.

26.5 Equations Reducible to Homogeneous Form

Equation of the form

dy

dx
=

ax+ by + c

a′x+ b′y + c′
,

a

a′
6=

b

b′
(26.4)

can be reduced to homogeneous form. The procedure is as follows:

Take

x = X + h and y = Y + k

whereX, Y are new variables andh, k are constants to be chosen so that the resulting

equation inX, Y becomes homogeneous. From above we havedx = dX, anddy = dY , so

thatdy/dx = dY/dX. Now the given differential equation in new variables becomes

dX

dY
=

aX + bY + (ah+ bk + c)

a′X + b′Y + (a′h + b′k + c′)
(26.5)

In order to make (26.5) homogeneous, the constanth andk must satisfy the following

algebraic equations

ah + bk + c = 0 , a′h+ b′k + c′ = 0 (26.6)

Solving equations (26.6), we obtain

h =
bc′ − b′c

ab′ − a′b
, k =

ca′ − c′a

ab′ − a′b
(26.7)
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providedab′ − a′b 6= 0. Knowingh andk we have

X = x− h, Y = y − k. (26.8)

The Equation (26.5) now reduces to

dY

dX
=

aX + b(Y/X)

a′ + b′(Y/X)
(26.9)

which is a homogeneous equation inX andY which can be solved by substitutingY/X =

v. After getting solution inX andy, we removeX andY using (26.8) and obtain solution

in terms ofx andy.

26.5.1 Example

Solve the differential equation
dy

dx
=

(x+ y + 4)

(x− y − 6)

Solution: Let x = X + h, y = Y + k, so that dy/dx = dY/dX and using this, the

given differential equation reduces to

dy

dx
=

X + Y + (h+ k + 4)

X − Y + (h− k − 6)
. (26.10)

Chooseh andk such thath+ k + 4 = 0, h− k − 6 = 0, and by solving, we geth = 1 and

k = −5. New variables becomesX = x − 1 andY = y + 5. Using this into (26.10), we

obtain

dY

dX
=

1 + Y/X

1 + Y/X
. (26.11)

Substituting

Y = Xv and
dY

dX
= v +X

dv

dX

the Equation (26.11) becomes

dX

X
=

1− v

1 + v2
dv =

dv

1 + v2
dv −

vdv

1 + v2
. (26.12)

Integrating the above equation, we get

logX = tan−1 v − (1/2) log(1 + v2) + (1/2) log c
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Further simplifications gives

2 logX + log(1 + Y 2/X2)− log c = 2 tan−1(Y/X), as v = Y/X

Thus, we get

X2 + Y 2 = ce2 tan
−1(Y/X);

ReplacingX andY asX = x− 1 andY = y + 5 we obtain the general solution as

(x− 1)2 + (y + 5)2 = ce2 tan
−1((y+5)/(x−1)).

Suggested Readings

Dubey, R. (2010). Mathematics for Engineers (Volume II). Narosa Publishing House.

New Delhi.

Weir, M.D., Hass, J. and Giordano, F.R. (2005). Thomas Calculus. Eleventh Edition.

Pearson Education. New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scientist and Engineers. First Indian

Edition. Viva Books Pvt. Ltd. New Delhi.

Raisinghania, M.D. (2005). Ordinary & Partial Differential Equation. Eighth Edition. S.

Chand & Company Ltd., New Delhi.

Kreyszig, E. (1993). Advanced Engineering Mathematics. Seventh Edition, John Willey

& Sons, Inc., New York.

Arfken, G.B. (2001). Mathematical Methods for Physicists.Fifth Edition, Harcourt Aca-

demic Press, San Diego.

Grewal, B.S. (2007). Higher Engineering Mathematics. Fourteenth Edition. Khanna

Publishilers, New Delhi.

Edwards, C.H., Penney, D.E. (2007). Elementary Differential Equations with Boundary

Value Problems. Sixth Edition. Pearson Higher Ed, USA.

Piskunov, N. (1996). Differential and Integral Calculus (Volume - 2). First Edition. CBS

Publisher, Moscow.

6 www.AgriMoon.Com239



Module 3: Ordinary Differential Equations

Lesson 27

Linear Differential Equation of First Order

In this lesson we shall learn linear differential equationsof first order. Such equations

are very often used in applications. Solution strategies ofsolving such equations will be

discussed. Further a another special form of differential equation which can be reduced

to linear differential equation of first order will be studied.

27.1 Linear Differential Equation

A first order differential equation is called linear if it canbe written in the form

dy

dx
+ P (x)y = Q(x) (27.1)

whereP andQ are constants or function ofx only.

A method of solving (27.1) relies on multiplying the equation by a function called inte-

grating function so that the left hand side of the differential equation can be brought under

a common derivative. SupposeR(x) is an integrating factor of the (27.1). Multiplying the

(27.1) byR(x), we obtain

R(x)
dy

dx
+ P (x)R(x)y = Q(x)R(x) (27.2)

Suppose, we wish that the L.H.S of (27.2) is the differentialcoefficient of some product.

Clearly, the termR(x)dydx can only be obtained by differentiating the productR(x)y(x). In

other words, we wish to have

R(x)
dy

dx
+ P (x)R(x)y(x) =

d

dx
(R(x)y(x)). (27.3)

This implies

R(x)
dy

dx
+ P (x)R(x)y(x) = R(x)

dy

dx
+ y(x)

dR

dx
.

On cancelling the first term on both the sides we obtain

P (x)R(x)y(x) = y(x)
dR

dx
⇒

dR

R
= Rdx.
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Integrating the above equation, we getlogR =
∫

Pdx. Note that the constant of integration

is not important here because the integrating factor will beused to multiplying both the

sides of the differential equation and therefore it will be cancelled. Thus, an integrating

factor (I.F.) of the differential Equation (27.1) is

R = e
∫
Pdx (27.4)

The Equation (27.2) now reduces to

d

dx
(Ry) = QR

By integrating above equation, we have

Ry =

∫

RQdx+ c,

or

ye
∫
Pdx =

∫

Qe
∫
Pdxdx+ c,

which is required solution of given differential equation.HereC is the constant of inte-

gration.

27.2 Example Problems

27.2.1 Problem 1

Solve x cosx
dy

dx
+ y(x sinx+ cosx) = 1, 0 < x < π/2.

Solution: We rewrite the given equation as

dy

dx
+ (tan x+

1

x
) =

sec x

x
.

An I.F. of the given differential equation is

e
∫
(tanx+ 1

x
)dx = elog x sec x = x sec x.

Hence, the required solution is

yx secx =

∫

sec2 xdx+ c,

or

yx sec x = tanx+ c,

where,c is an arbitrary constant.
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27.2.2 Problem 2

Solve (1 + x2)
dy

dx
= x(1− y).

Solution: Rewriting the given differential equation in standard form

dy

dx
+

x

1 + x2
y =

x

1 + x2
.

The I.F. is

I.F. = e
∫

x

1+x
2
dx

= e
1
2
ln(1+x2) =

√

1 + x2.

The solution is

y
√

1 + x2 =

∫

x
√
1 + x2

+ c ⇒ y = 1 + c (1 + x2)−1/2

Herec is an arbitrary constant.

27.3 Equations Reducible to Linear Form

A equation of the form

f ′(y)
dy

dx
+ Pf(y) = Q, (27.5)

can be reduced to linear form, by substitutingf(y) = v so thatf ′(y)dydx = dv/dx. The

Equation (27.5) then becomes

dv/dx+ Pv = Q, (27.6)

which is linear inv andx and its solution can be obtained with the help of I.F. as before.

Thus, we have an I.F.=e
∫
pdx and the solution is

ve
∫
pdx =

∫

Qe
∫
Pdxdx+ c.

Finally, we replacev by f(y) to obtain the required solution.

27.4 Example Problems

27.4.1 Problem 1

Solve
dy

dx
cos y + 2x sin y = x.
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Solution: Substitutionsin y = v which impliescos y dy
dx = dv

dx reduces the given differential

equation to
dv

dx
+ 2xv = x.

This is a linear differential equation of first order and its I.F. ise
∫
2xdx = ex

2

. The solution

of the equation inv is given by

vex
2

=

∫

xex
2

dx+ c ⇒ v =
1

2
+ ce−x2.

Replacingv by sin y we get the required solution as

y = sin−1

(

1

2
+ ce−x2

)

.

27.4.2 Problem 2

Solve
dy

dx
+ x sin 2y = x3 cos2 y

Solution: Dividing the given differential equation bycos2 y, we obtain

sec2 y
dy

dx
+ 2x tan y = x3.

Puttingtan y = v so thatsec2 y dy
dx = dv

dx . Hence the above equation becomes

dv

dx
+ 2xv = x3,

which is linear. Its I.F. isex
2

and its solution is given as follows

vex
2

=

∫

ex
2

x3dx+ c,

vex
2

=
1

2
(x2 − 1)ex

2

+ c.

Replacingv by tan y we obtain the required solution.

27.5 Bernoulli’s Equation

An equation of the form

dy/dx+ Py = Qyn (27.7)
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whereP andQ are constants or function ofx only andn is constant except0 and1 is

called Bernoulli differential equation. This equation caneasily be solved by multiplying

both sides byy−n as

y−ndy/dx+ Py1−n = Q (27.8)

Settingy1−n = v, so thaty−n dy
dx = 1

(1−n)
dv
dx , the Equation (27.8) becomes

dv/dx+ P (1− n)v = Q(1− n),

which is linear inv andx. Its I.F. ise
∫
P (1−n)dx and hence the required solution is

y1−ne
∫
P (1−n)dx =

∫

Qe
∫
P (1−n)dxdx+ c,

wherec is an arbitrary constant.

27.5.1 Example

Solve x
dy

dx
+ y = y2 ln x .

Solution: Rewrite the given equation

y−2dy

dx
+

1

x
y−1 = −x−1 ln x (27.9)

Puttingy−1 = v so that−y−2 dy
dx = dv

dx . Then the Equation (27.9) gives

dv

dx
−

1

x
v = x−1 lnx. (27.10)

The I.F. of the differential Equation (27.10) ise−
∫

1
x
dx = 1

x , and hence the solution be-

comes

v
1

x
= −

∫

x−2 log xdx+ c

or by replacingv by y−1 we get

y−1 = 1 + ln x+ cx,

wherec is an arbitrary constant.
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Module 3: Ordinary Differential Equations

Lesson 28

Exact Differential Equation of First Order

This lesson provides an overview of exact differential equation. A necessary condition

for a differential equation to be exact will be derived. Thendifferent solution techniques

will be discussed. Several examples to clarify the ideas will be supplemented.

28.1 Exact Differential Equation of First Order

If M andN are functions ofx andy, the equationMdx + Ndy = 0 is called exact when

there exists a functionf(x, y) such that

d(f(x, y)) = Mdx+Ndy,

or equivalently

∂f

∂y
dx+

∂f

∂x
dy = Mdx+Ndy.

28.1.1 Theorem

The necessary and sufficient condition for the differentialequation

Mdx+Ndy = 0 (28.1)

to be exact is

∂M

∂y
=

∂N

∂x
. (28.2)

Proof: First we proof that the condition (28.2) is necessary. To prove we let the Equation

(28.1) to be exact. Then, by definition, there existsf(x, y) such that

∂f

∂y
dx+

∂f

∂x
dy = Mdx+Ndy. (28.3)
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Exact Differential Equation of First Order

Equating coefficients ofdx anddy in Equation (28.3), we get

M =
∂f

∂y
, (28.4)

N =
∂f

∂x
. (28.5)

To eliminate the unknownf(x, y) from above equations, we assume that the2nd order

partial derivatives off are continuous. We now differentiate (28.4) and (28.5) w.r.t. x and

y respectively as
∂M

∂y
=

∂2f

∂y∂x
,

∂N

∂x
=

∂2f

∂y∂x

This implies
∂M

∂y
=

∂N

∂x
.

Thus, if (28.1) is exact,M andN satisfy (28.2).

Now we show that the condition is sufficient. Suppose (28.2) holds and show that (28.1)

is exact. For this we find a functionf(x, y) such that

d(f(x, y)) = Mdx+Ndy.

Let g(x, y) =
∫

Mdx be the partial integral ofM such that
∂g

∂x
= M . We first prove that

(

N −
∂g

∂y

)

is function ofy only. This is clear because

∂

∂x

(

N −
∂g

∂y

)

=
∂N

∂x
−

∂2g

∂x∂y

Assuming
∂2g

∂x∂y
=

∂2g

∂y∂x
and using Equation (28.2) we get

∂

∂x

(

N −
∂g

∂y

)

=
∂N

∂x
−

∂2g

∂y∂x

=
∂N

∂x
−

∂

∂y
(
∂g

∂x
) =

∂N

∂x
−

∂M

∂y
= 0.

Take,f(x, y) = g(x, y) +
∫

(N −
∂g
∂y
)dy. Hence taking total differentiation of this equation

gives

df = dg + (N −
∂g

∂y
)dy =

∂g

∂x
dx+

∂g

∂y
dy +Ndy −

∂g

∂y
dy,

= (
∂g

∂x
)dx+Ndy = Mdx+Ndy,

Thus, if Equation (28.2) is satisfied, Equation (28.1) is an exact equation.
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28.2 Example Problems

28.2.1 Problem 1

Solve(x2 − 4xy − 2y2)dx+ (y2 − 4xy − 2x2)dy = 0 .

Solution: Comparing the given equation withMdx+Ndy = 0, we have

M = (x2 − 4xy − 2y2), N = (y2 − 4xy − 2x2)

Therefore
∂M

∂y
= −4x− 4y =

∂N

∂x

Hence, the given equation is exact and hence there exists a functionf(x, y) such that

d(f(x, y)) =
∂f

∂x
dx+

∂f

∂y
dy = Mdx+Ndy

which implies
∂f

∂x
= M(x, y) and

∂f

∂y
= N(x, y)

Integration of the first of above equations with respect tox gives

f =
1

3
x3 − 2x2y − 2y2x+ c1(y)

wherec1(y) is an arbitrary function ofy only. Differentiating the abovef with respect to

y and using
∂f

∂y
= N(x, y) we get

∂f

∂y
= −2x2 − 4xy + c′1(y) = +y2 − 4xy − 2x2

This implies

c′1(y) = y2 ⇒ c1(y) =
y3

3
+ c2

Hence the solution is given by

f(x, y) = c3 ⇒ x3 − 6xy(x+ y) + y3 = c

Herec2, c3 andc are constants of integration.
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28.2.2 Problem 2

Determine whether the differential equation(x + sin y)dx + (x cos y − 2y)dy = 0 is exact

and solve it.

Solution: For given equation we have

M(x, y) = (x+ sin y) and N(x, y) = (x cos y − 2y) (28.6)

Now we check
∂M

∂y
= cos y =

∂N

∂x

Hence the given differential equation is exact. For the solution we seek a functionf(x, y)

so that
∂f

∂x
= (x+ sin y) and

∂f

∂y
= (x cos y − 2y)

From the first relation we get

f(x, y) =
x2

2
+ x sin y + c1(y)

Differentiating w.r.t.y and using the second relation of (28.6) we get

x cos y + c′1(y) = x cos y − 2y ⇒ c′1(y) = −2y ⇒ c1(y) = −y2 + c2

Therefore, we have

f(x, y) =
x2

2
+ x sin y − y2 + c2

Then the solution of the given differential equation

f(x, y) = c3 ⇒
x2

2
+ x sin y − y2 = c.

28.2.3 Problem 3

Solve the differential equation(2y2x− 2y3)dx+ (4y3 − 6y2x+ 2yx2)dy

Solution: First we check the exactness of the equation by

∂M

∂y
= 4xy − 6y2 =

∂N

∂x
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So the equation is exact. Then, there exists a functionf(x, y) such that

∂f

∂x
= (2y2x− 2y3) and

∂f

∂y
= (4y3 − 6y2x+ 2yx2)

This gives

f(x, y) = (y2x2 − 2xy3) + c1(y) ⇒
∂f

∂y
= (2yx2 − 6xy2) + c′1(y)

This implies

c′1(y) = 4y3 ⇒ c1(y) = y4 + c2

Hence the solution is

f(x, y) = c3 ⇒ y2x2 − 2xy3 + y4 = c.

28.2.4 Problem 4

Solve that the differential equation(3xy+ y2)dx+(x2+ xy)dy = 0. is not exact and hence

it cannot be solve by the method discussed above.

Solution: For the given differential equation we have

∂M

∂y
= 3x+ 2y, and

∂N

∂x
= 2x+ y;

Since
∂M

∂y
=

∂N

∂x
, the given equation is not exact.

Now we see that it cannot be solved by the procedure describedpreviously where we seek

a functionf such that

∂f

∂x
= 3xy + y2 and

∂f

∂y
= x2 + xy (28.7)

Integration of the first relation gives

f(x, y) =
3

2
x2y + xy2 + c1(y)

wherec1(y) is an arbitrary function ofy only. Now we differentiate the above equation

with respect toy and set the resulting expression equals tox2+xy from the second relation

of (28.7) as
3

2
x2 + 2xy + c′1(y) = x2 + xy
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Exact Differential Equation of First Order

This provides

c′1(y) = −
1

2
x2 − xy

Since the right side of the above depends onx as well as ony, it is impossible to solve this

equation forc1(y). Thus there is nof(x, y) exists and hence the given differential equation

cannot be solved in this way.
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Module 3: Ordinary Differential Equations

Lesson 29

Exact Differential Equations: Integrating Factors

In general, equations of the typeM(x, y)dx + N(x, y)dy = 0 are not exact. However, it

is sometimes possible to transform the equation into an exact differential equation multi-

plying it by a suitable functionI(x, y). That is, if I(x, y) is an integrating factor then the

differential equation

I(x, y)M(x, y)dx+ I(x, y)N(x, y)dy = 0

becomes exact. A solution to the above equation is obtained by solving the exact differ-

ential equation as in the previous lesson. Note that the given equation may have several

integrating factors. This is exactly the procedure we have used for solving linear differ-

ential equations in earlier lesson. Here we deal with more general differential equation.

29.1 Rule I: By Inspection

There is not much theory behind finding integrating factor byinspection. This method

works based on recognition of some standard exact differentials that occur frequently in

practice. The following list of exact differentials would be quite useful in solving exact

differential equations:

(i) d(xy) = ydx+ xdy

(ii) d
(y

x

)

=
xdy − ydx

x2
or d

(

x

y

)

=
ydx− xdy

y2

(iii) d
(

ln
y

x

)

=
xdy − ydx

xy
or d

(

ln
x

y

)

=
ydx− xdy

xy

(iv) d
(

arctan
y

x

)

=
xdy − ydx

x2 + y2
or d

(

arctan
x

y

)

=
ydx− xdy

y2 + x2

(v) d (ln xy) =
ydx+ xdy

xy

29.1.1 Example

Solve the differential equation y(y2 + 1)dx+ x(y2 − 1)dy.
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Solution: The given equation can be rewritten as

y2(ydx+ xdy) + ydx− xdy

This is further rewritten as

(ydx+ xdy) +

(

ydx− xdy

y2

)

= 0

Using standard differential forms given above we get

d(xy) + d

(

x

y

)

= 0

Integrating the above equation, the desired solution is given as

xy2 + x = cy

Herec is an arbitrary constant.

29.2 Rule II: Mdx+Ndy = 0 is homogeneous and Mx +Ny 6= 0

If the equationMdx+Ndy = 0 is homogeneous andMx+Ny 6= 0, thenI(x, y) =
1

(Mx +Ny)
is an integrating factor. In order to prove the result, we need to show that

Mdx+Ndy

Mx +Ny
= d (some functionx andy)

RewritingMdx+Ndy as

Mdx+Ndy =
1

2

{

(Mx+Ny)

(

dx

x
+

dy

y

)

+ (Mx −Ny)

(

dx

x
−

dy

y

)}

Multiplying by proposed integrating factor we get

Mdx+Ndy

Mx +Ny
=

1

2

{(

dx

x
+

dy

y

)

+
(Mx−Ny)

(Mx+Ny)

(

dx

x
−

dy

y

)}

(29.1)

Given thatM(x, y) andN(x, y) are homogeneous functions of some degreen, i.e.,M(tx, ty) =

tnM(x, y) andN(x, y) = tnN(x, y). Then

M

(

x

y
, 1

)

= M

(

1

y
x,

1

y
y

)

=
1

yn
M(x, y) ⇒ M(x, y) = ynM

(

x

y
, 1

)
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Exact Differential Equations: Integrating Factors

Similarly, we get

N(x, y) = ynN

(

x

y
, 1

)

Now consider

(Mx−Ny)

(Mx+Ny)
=

ynxM
(

x
y , 1

)

− ynyN
(

x
y , 1

)

ynxM
(

x
y , 1

)

+ ynyN
(

x
y , 1

) =

x
yM

(

x
y , 1

)

−N
(

x
y , 1

)

x
yM

(

x
y , 1

)

+N
(

x
y , 1

) = f

(

x

y

)

Going back to the Equation (29.1), we have

Mdx+Ndy

Mx+Ny
=

1

2

{

d (ln(xy)) + f

(

x

y

)

d

(

ln
x

y

)}

Rewriting f (x/y) = f (exp(ln(x/y))) and definingg(x) := f(exp(x)), the above equation

becomes

Mdx+Ndy

Mx+Ny
=

1

2

{

d (ln(xy)) + g (ln(x/y)) d

(

ln
x

y

)}

Hence, we have shown that

Mdx+Ndy

Mx +Ny
= d

[

1

2
ln(xy) +

1

2

∫

g

(

ln
x

y

)

d

(

ln
x

y

)]

Thus
1

Mx +Ny
is an integrating factor of the homogenous differential equationMdx +

Ndy = 0.

29.2.1 Example

Solve the differential equation (x2y − 2xy2)dx− (x3 − 3x2y)dy = 0

Solution: The given equation is a homogeneous differential equation.Comparing it with

Mdx+Ndy = 0, we haveM = x2y − 2xy2 andN = −(x3 − 3x2y). Since

Mx+Ny = (x2y − 2xy2)x− y(x3 − 3x2y) = x2y2 6= 0,

the integrating factor is
1

(Mx+Ny)
=

1

x2y2

Multiply by the integrating factor, the given differentialequation becomes

(1/y − 2/x)dx− (x/y2 − 3/y)dy = 0
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This is now exact and can be rewritten as

ydx− xdy

y2
−

2

x
dx+

3

y
dy = 0 ⇒ d

(

x

y

)

−
2

x
dx+

3

y
dy = 0

Integrating the above equation we obtain the desired solution as

x− 2y ln x+ 3y ln y = cy

29.3 Rule III: Mdx +Ndy = 0 is of the form f1(xy)ydx+ f2(xy)xdy = 0

If the equationMdx+Ndy = 0 is of the formf1(xy)ydx+f2(xy)xdy = 0, then
1

(Mx−Ny)
is an integrating factor providedMx−Ny 6= 0. Similar to rule II we now show that

Mdx+Ndy

Mx −Ny
= d (some functionx andy)

Again, rewritingMdx +Ndy as

Mdx+Ndy =
1

2

{

(Mx+Ny)

(

dx

x
+

dy

y

)

+ (Mx −Ny)

(

dx

x
−

dy

y

)}

Now dividing byMx−Ny we get

Mdx+Ndy

Mx −Ny
=
1

2

{

(Mx +Ny)

Mx −Ny

(

dx

x
+

dy

y

)

+

(

dx

x
−

dy

y

)}

UsingM = f1(xy)y andN = f2(xy)x we obtain

Mdx+Ndy

Mx−Ny
=

1

2

{

f1(xy) + f2(xy)

f1(xy)− f2(xy)
d (lnxy) + d

(

ln
x

y

)}

Let f(xy) :=
f1(xy) + f2(xy)

f1(xy)− f2(xy)
andg(x) := f(exp(x)), the above equation reduces to

Mdx+Ndy

Mx −Ny
=

1

2

{

f(xy)d (ln xy) + d

(

ln
x

y

)}

=
1

2

{

g(lnxy)d (ln xy) + d

(

ln
x

y

)}

This shows that

Mdx+Ndy

Mx−Ny
= d

[

1

2

∫

g(lnxy)d (ln xy) +
1

2

(

ln
x

y

)]
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29.3.1 Example

Solve y(x2y2 + 2)dx+ x(2− 2x2y2)dy = 0.

Solution: Comparing withMdx+Ndy = 0, we haveM = y(x2y2+2) andN = x(2−2x2y2).

The given equation is of the form

f1(xy)ydx+ f2(xy)xdy = 0

and we have

Mx−Ny = xy(x2y2 + 2)− xy(2− 2x2y2) = 3x3y3 6= 0

Therefore, multiplying the equation by1/3x3y3, we obtain

(1/3x+ 2/(3x3y2))dx+ (2/(3x2y3)− 2/3y)dy = 0

This is an exact differential equation which can be solved with the technique discussed in

previous lesson.

29.4 Rule IV: Most general approach

Now we discuss the most general approach of finding integrating function. The idea is to

multiply the given differential equation

M(x, y)dx+N(x, y)dy = 0 (29.2)

by a functionI(x, y) and then try to chooseI(x, y) so that the resulting equation

I(x, y)M(x, y)dx+ I(x, y)N(x, y)dy = 0 (29.3)

becomes exact. The above equation is exact if and only if

∂(IM)

∂y
=

∂(IN)

∂x
(29.4)

If a function I(x, y) satisfying the partial differential Equation (29.4) can befound, then

(29.3) will be exact. Unfortunately, solving Equation (29.4), is as difficult to solve as the

original Equation (29.2) by some other methods. Therefore,while in principle integrating

factors are powerful tools for solving differential equations, in practice they can be found
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only in special cases. The cases we will consider are: (i) an integrating factorI that is

either as function of x only, or (ii) a function of y only.

Let us determine necessary conditions onM andN so that (29.2) has an integrating factor

I that depends onx only. Assuming thatI is a function of x only, then Equation (29.4)

reduces to

IMy = INx +N
dI

dx
⇒

dI

dx
=

IMy − INx

N
(29.5)

If (My − Nx)/N is a function ofx only, say f(x), then there is an integrating factorI

that also depends only onx which can be found by solving (29.5) asI(x) = e
∫
f(x)dx. A

similar procedure can be used to determine a condition underwhich Equation (29.2) has

an integrating factor depending only ony. To conclude, we have:

If
1

N

(

∂M

∂y
−

∂N

∂x

)

is function ofx alone sayf(x), thenI(x) = e
∫
f(x)dx is an I.F.

If
1

M

(

∂N

∂x
−

∂M

∂y

)

is function ofy alone sayf(y), thenI(y) = e
∫
f(y)dy is an I.F.

29.5 Example Problems

29.5.1 Problem 1

Find an integrating factor of (x2 + y2 + x)dx + xydy = 0 Solution: Comparing with

Mdx+Ndy = 0, we have

M = (x2 + y2 + x) andN = xy

Further, note that
1

N

(

∂M

∂y
−

∂N

∂x

)

=
1

x

is a function ofx alone. Hence, the integrating factor of the given problem ise
∫
1/xdx = x.

29.5.2 Problem 2

Find an integrating factor of (2xy4ey + 2xy3 + y)dx+ (x2y4ey − x2y2 − 3x)dy = 0

Solution: Compare withMdx+Ndy = 0, we get

M = (2xy4ey + 2xy3 + y) andN = (x2y4ey − x2y2 − 3x)
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Also, note that
1

M

(

∂N

∂y
−

∂M

∂x

)

= −
4

y

is a function ofy alone. Hence the integrating factor of the given problem ise
∫
−4/ydy = 1/y4.
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Module 3: Ordinary Differential Equations

Lesson 30

Linear Differential Equations of Higher Order

In this lesson we discuss linear differential equation of higher order with constant coeffi-

cients. In particular, we shall learn about the techniques of finding solutions of homoge-

nous equations. Different cases will be considered with thehelp of several examples.

30.1 Linear Differential Equation

In a linear differential equation, the dependent variable and its differential coefficients

occur only in the first degree and are not multiplied together. The general form of the

equation is

dny

dxn
+ a1(x)

dn−1y

dxn−1
+ a2(x)

dn−2y

dxn−2
+ . . .+ an(x)y = F (x), (30.1)

wherea1, a2, . . . , an andF are either constants or functions ofx only. If the right hand

side, i.e.F (x), is identically zero, the equation is said to be homogeneous; otherwise it is

called nonhomogeneous. Before we discuss some particular cases of the above equation

we state two facts about the solution of a linear homogeneousdifferential equation. The

first says that if we known solutionsy1, y2, . . . , yn of the linear homogeneous equation,

then any linear combinationy = c1y1 + c2y2 + . . . cnyn is also a solution for any constants

c1, c2, . . . , cn. This can easily be proved by substitutingy = c1y1 + c2y2 + . . . cnyn into

the equation and using linearity of the equation. The secondimportant result concerns

about the general solutions (solution containing all solutions) to the linear homogeneous

equation. This result says that any solution is some linear combination ofy1, y2, . . . , yn for

some suitable values of constantsc1, c2, . . . , cn. However, this is not true for any combina-

tion of solutions but is true if the solutionsy1, y2, . . . , yn are linearly independent.

30.2 Linear Differential Equation with Constant Coefficients

An equation of the form

dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ . . .+ any = F (x), (30.2)
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wherea1, a2, . . . , an are constants, is called linear differential equation withconstant coef-

ficients. Using the symbolsDn :=
dn

dxn
, the Equation (30.2) becomes

(Dn + a1D
n−1 + a2D

n−2 + ... + an)y = F (x), (30.3)

Further definingf(D) := Dn + a1D
n−1 + a2D

n−2 + ... + an, we can rewrite the given

differential equation in a more compact form asf(D)y = F (x). Heref(D) acts as oper-

ator ony to yield F (x). The general solution of (30.2) can be written as the sum of the

general solution of the corresponding homogeneous equation, refereed as complimentary

function (C.F.), and a particular solution or sometimes called particular integral (P.I) of

nonhomogeneous equation. Thus

y = C.F.+ P.I. (30.4)

Note that the C.F. involvesn arbitrary constants and P.I. does not involve any arbitrary

constant. It is readily evident thaty in (30.4) is the general solution of the given non-

homogeneous differential equation because it satisfies thegiven differential equation as

f(D) (C.F.+ P.I.) = f(D) (C.F.)+ f(D) (P.I.) = 0+F (x) and it hasn arbitrary constants.

30.3 C.F. of a Differential Equation

By definition, C.F. of (30.2) is the general solution of

(Dn + a1D
n−1 + a2D

n−2 + ... + an)y = 0 (30.5)

To solve Equation (30.5), we seek a function which satisfies the above equation. One

intelligent guess of such a function is the exponential function emx, wherem is a constant.

Differentiations of this exponential function are just constant multiples of the original

exponential. If we substitute this function into the Equation (30.5), we obtain

(mn + a1m
n−1 + a2m

n−2 + ...+ an)e
mx = 0 (30.6)

Since the exponential function is never zero, we can divide this last equation byemx.

Thus,y = emx is a solution to Equation (30.5) if and only ifm is a solution to the algebraic

equation

mn + a1m
n−1 + a2m

n−2 + ... + an = 0 (30.7)

Equation (30.7) is called the auxiliary equation (A.E.) or characteristic equation (C.E.) of

the differential Equation (30.5).
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30.4 Case I: A.E. has real and distinct roots

If m1, m2, m3, ..., mn be real and distinct then the solutionsem1x, emmx, . . . , emnx are lin-

early independent and the general solution of the given homogeneous differential equation

becomes

y = c1e
m1x + c2e

m2x + c3e
m3x + ...+ cne

mnx,

wherec1, c2, ..., cn are arbitrary constants.

30.4.1 Example

Find the general solution of the differential equation (D3 + 6D2 + 11D + 6)y = 0.

Solution: The A.E. is(m3 + 6m2 + 11m + 6) = 0. The roots arem = −1,−2,−3. Hence

the required solution isy = c1e
−x + c2e

−2x + c3e
−3x.

30.5 Case II: A.E. has repeated real roots

Let m1 = m2 are repeated roots of the A.E. Then, we haven − 1 linearly independent

solutions. It can be shown that a simple choicey = xem1x is also a solution which is

independent to the restn− 1 solutions. Thus, the general solution of the given differential

equation is given by

y = (c1 + c2x)e
m1x + c3e

m3x + ...+ cne
mnx

The above idea can be further extended by taking solutionsxem1x, x2em1x, . . . , xl−1em1x . . .

if the rootm1 is repeatingl−times.

30.5.1 Example

Find the general solution to (D4 + 2D3 − 3D2 − 4D + 4)y = 0.

Solution: The A.E. of given equation is

(m4 + 2m3 − 3m2 − 4m+ 4) = 0

The roots of the A.E. arem = 1, 1,−2,−2. The required solution isy = (c1+c2x)e
x+(c3+

c4x)e
−2x.
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30.6 Case III: A.E. has complex roots

If m1 = α + iβ andm2 = α − iβ, then the solutionsem1x, em2x, . . . , emnx are linearly

independent and the general solution of the given homogeneous differential equation is

given by

y = c′1e
m1x + c′2e

m2x + c3e
m3x + ...+ cne

mnx.

The above solution can be simplified as

y = c′1e
αx (cos βx+ i sin βx) + c′2e

αx (cos βx− i sin βx) + c3e
m3x + ...+ cne

mnx.

Defining new constantsc1 = c′
1
+ c′

2
andc2 = i(c1 − c2), the general solution becomes

y = eαx (c1 cos βx+ c2 sin βx) + c3e
m3x + ... + cne

mnx.

Similar to the case II, the solution for repeated complex roots can be found, see example

below.

30.6.1 Example

Find the general solution to the differential equation (D2 + 1)2y = 0.

Solution: The A.E. and its roots are

(m2 + 1)2 = 0, and thereforem = ±i,±i.

This is the case of repeated complex root, so case II and case III can be combined to give

the desired solution asy = (c1 + c2x) cosx+ (c3 + c4x) sin x.

30.7 Miscellaneous Problems

30.7.1 Problem 1

Find the general solution of the differential equation (D3 + 3D2 + 3D + 1)y = 0.

Solution: The A.E. and its root are given by(m+1)3 = 0 andm = −1,−1,−1. Therefore,

the required solution isy = (c1 + c2x+ c3x
2)e−x.
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30.7.2 Problem 2

Find the general solution of (D3 − 8)y = 0.

Solution: The A.E. of the given equation is(m3 − 8) = 0. Its root arem = 2,−1 ± i
√
3.

The required solution isy = c1e
2x + e−x(c2 cos

√
3x+ c3 sin

√
3x).

30.7.3 Problem 3

Find the general solution of the differential equation (D2 − 2D + 5)2y = 0.

Solution: The auxiliary equation is(m2 − 2m + 5)2 = 0. Its roots arem = 1 ± 2i, 1 ± 2i

Hence the required solution isy = ex [(c1 + c2x) cos 2x+ (c3 + c4x) sin 2x] .

30.7.4 Problem 4

Find the general solution of (D2 +D + 1)2(D − 2)y = 0.

Solution: The A.E. of the given equation is(m2 + m + 1)2(m − 2) = 0. Its roots are

m = −1

2
± i

√
3

2
,−1

2
± i

√
3

2
, 2. Hence, the desired solution is

y = c1e
2x + e−

1

2
x

[

(c2 + c3x) cos

√
3

2
x+ (c4 + c5x) sin

√
3

2
x

]

30.7.5 Problem 5

Find the general solution of the differential equation (D2 + 1)3(D2 +D + 1)2y = 0.

Solution: The A.E. of given equation is

(D2 + 1)3(D2 +D + 1)2 = 0,

The roots arem = ±i,±i,±i,−
1

2
± i

√
3

2
,−

1

2
± i

√
3

2
. Therefore, the desired solution is

y =(c1 + c2x+ c3x
2) cosx+ (c4 + c5x+ c6x

2) sinx

+ e−
1

2
x

[

(c7 + c8x) cos

√
3

2
x+ (c9 + c10x) sin

√
3

2
x

]
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Module 3: Ordinary Differential Equations

Lesson 31

Linear Differential Equation of Higher Order

In connection to the last lesson, we discuss solution methodologies of getting particular

integral of the linear differential equations of higher order. In particular, in this lesson

we present operator method which is somewhat easier than other methods for finding

particular integrals.

31.1 Determination of Particular Integral (P.I.)

As we have seen in the earlier lesson that a general nonhomogeneous linear differential

equations with constant coefficients can be written in operator form asf(D)y = F (x).

The operator,1/f(D) is called inverse operator which gives a particular integral when

operated on both the sides of the given differential equation. Hence, a particular integral

of the given differential equation is given as1f(D)F (x). First we give a rather general idea

of getting a particular integral with this method and then state some other useful direct

results. Note that the operatorf(D) can be expressed as(D−α1)(D−α2) . . . (D−αn) and

thus a particular integral is given as

1

f(D)
F (x) =

1

D − α1

1

D − α2
. . .

1

D − αn
F (x) (31.1)

We give a general idea of evaluating an expression of the type
1

D − α
F (x). This procedure

can be repeatedly applied to find a particular integral (31.1). However, applicability of this

method depends upon the form ofF (x).

We give a general theorem that can be applied to any problem for finding particular inte-

gral of a differential equation.

31.1.1 Theorem 1

If F (x) is function of x and α is a constant, then

1

D − α
F (x) = eαx

∫

F (x)e−αxdx.
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Proof: Let us assume that

y =
1

D − α
F (x)

On operating(D − α) both sides, we get

(D − α)y = F (x) ⇒
dy

dx
− αy = F (x)

The above equation is a linear differential equation of firstorder whose integrating factor

is e−
∫
αdx = e−αx. Hence, the solution is given by

ye−αx =

∫

F (x)e−αxdx ⇒ y = eαx
∫

F (x)e−αxdx

Since our interest is finding a particular integrals, the constant of integration is dropped.

Thus,
1

D − α
F (x) = eαx

∫

F (x)e−αxdx.

Now we state some useful result those will be used to find P.I. of certain special forms of

F (x).

31.1.2 Theorem 2

If α is a constant, then f(D)eαx = f(α)eαx

Proof: We know thatDeαx = αeαx and similarlyD2eαx = α2eαx. With induction we can

prove thatDneαx = αneαx for any natural numbern. This proves the resultf(D)eαx =

f(α)eαx.

31.1.3 Theorem 3

If α is a constant and g(x) is any function, then f(D) (eαxg(x)) = eαxf(D + α)g(x)

Proof: We know thatD (eαxg(x)) = αeαxg(x)+eαxDg(x) = eαx(α+D)g(x). Similar to the

proof of previous theorem we can prove with induction thatDneαxg(x) = eαx(α+D)ng(x)

for any natural numbern. This proves the resultf(D) (eαxg(x)) = eαxf(D + α)g(x). This

result is known as shifting property of operatorf(D).
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31.1.4 Theorem 4

If α and β are arbitrary constants, then

f(D2) sin(αx+ β) = f(−α2) sin(αx+ β) and f(D2) cos(αx+ β) = f(−α2) cos(αx+ β)

Proof: It can easily be verified thatD2 sin(αx+β) = −α2 sin(αx+β) andD2 cos(αx+β) =

−α2 cos(αx + β). In other words, we can replaceD2 by −α2 and this proves the desired

result.

Now we describe the method for some special form ofF (x).

31.2 Rule I: F (x) is of the form eax

We know from Theorem 31.1.2 thatf(D)eαx = f(α)eαx. Operating on both sides by

1/f(D) we get

eαx =
1

f(D)
f(α)eαx ⇒ eαx = f(α)

1

f(D)
eαx

This implies that
1

f(D)
eαx =

1

f(α)
eαx, provided f(α) 6= 0

If f(α) = 0, then(D − α) is a factor off(D), sayf(D) = (D − α)g(D). Then

1

f(D)
eαx =

1

(D − α)

1

g(D)
eαx =

1

(D − α)

1

g(α)
eαx provided g(α) 6= 0

Now using Theorem 31.1.1, we get

1

f(D)
eαx =

1

g(α)

1

(D − α)
eαx =

1

g(α)
eαxx

In caseg(α) = 0 then , sayf(D) = (D − α)2h(D). In this case we get

1

f(D)
eαx =

1

h(α)

1

(D − α)2
eαx =

1

g(α)

x2

2!
eαx provided h(α) 6= 0

Again, if h(α) = 0, the same procedure can be repeated. To conclude, we have thefollow-

ing results:

(i)
1

f(D)
eαx =

1

f(α)
eαx, wheref(α) 6= 0
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(ii) If f(α) = 0, then f(D) must posses a factor of the type(D − α)r, say f(D) =

(D − α)rg(D) whereg(α) 6= 0. Then the following formula is applicable
1

(D − α)r
eαx =

xr

r!
eαx

.

31.3 Example Problems

31.3.1 Problem 1

Find the general solution of the differential equation (D2 − 3D + 2)y = e3x.

Solution: The auxiliary equation is

(m2 − 3m+ 2) = 0 ⇒ (m− 1)(m− 2) = 0 ⇒ m = 1, 2.

The complimentary function is given as

C.F. = c1e
x + c2e

2x

The particular integral is

P.I. =
1

D2 − 3D + 2
e3x =

1

32 − 3.3 + 2
e3x =

1

2
e3x.

The general solution is:y = c1e
x + c2e

2x +
1

2
e3x.

31.3.2 Problem 2

Solve (4D2 − 12D + 9)y = 144e3x/2

Solution: The auxiliary equation is

(4m2 − 12m+ 9) = 0 ⇒ m = 3/2, 3/2.

The complimentary function is

C.F. = (c1 + c2x)e
3x/2

The particular integral is

P.I. =
144

(2D − 3)2
e3x/2 =

144

4

1

(D − 3/2)2
e3x/2 = 36

x2

2!
e3x/2

The required solution is:y = (c1 + c2x)e
3x/2 + 36x

2

2! e
3x/2.
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31.4 Rule II: F (x) is of the form cos ax or sin ax

We expressf(D) as a function ofD2, sayf(D) = φ(D2). From Theorem 31.1.4 we know

thatφ(D2) sin(αx+ β) = φ(−α2) sin(αx+ β). Applying [φ(D2)]−1 both sides we obtain

sin(αx+ β) =
1

φ(D2)
φ(−α2) sin(αx+ β)

If φ(−α2) 6= 0, we can divide the above equation byφ(−α2) to get

1

φ(D2)
sin(αx+ β) =

1

φ(−α2)
sin(αx+ β)

Similarly,

1

φ(D2)
cos(αx+ β) =

1

φ(−α2)
cos(αx+ β), provided φ(−α2) 6= 0

In case,φ(−α2) = 0, we can rewritesin(αx + β) = Im(ei(αx+β)) and cos(αx + β) =

Re(ei(αx+β)). Now case I can be applied as

1

f(D)
sin(αx+ β) = Im

(

1

f(D)
ei(αx+β)

)

= Im

(

1

f(iα)
ei(αx+β)

)

provided f(iα) 6= 0

Similarly,

1

f(D)
cos(αx+ β) = Re

(

1

f(iα)
ei(αx+β)

)

provided f(iα) 6= 0

31.5 Example Problems

31.5.1 Problem 1

Solve the differential equation (D2 + 1)y = cos 2x.

Solution: The characteristic equation of the corresponding homogeneous equation is

(m2 + 1) = 0 ⇒ m = ±i

Hence, C.F.= (c1 cosx+ c2 sin x). The particular integral is given by

P.I. =
1

D2 + 1
cos 2x =

1

(−22 + 1)
cos 2x =

1

−3
cos 2x.

The required solution is:y = (c1 cosx+ c2 sin x)−
1

3
cos 2x.
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31.5.2 Problem 2

Solve the differential equation (D2 − 4D + 3)y = sin x.

Solution: The roots of the characteristic equations are1 and 3. The complementary

function isC.F. = c1e
x + c2e

3x. The particular integral is

P.I. =
1

D2 − 4D + 3
sin x

ReplacingD2 by −1, we get

P.I. =
1

2− 4D
sin x =

1

2

1

1− 2D
sin x =

1

2

1 + 2D

1− 4D2
sin x

Again, replacingD2 by −1, we obtain

P.I. =
1

10
(1 + 2D) sinx =

1

10
(sin x+ 2 cosx)

Hence the complete solution is

y = c1e
x + c2e

3x +
1

10
(sin x+ 2 cosx),

wherec1 andc2 are arbitrary constants.
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Lesson 32

Linear Differential Equation of Higher Order (Cont.)

Here we continue discussion for solving linear equation of the formf(D)y = F (x). In the

last lesson, we have found particular integral for two different types of functionsF (x).

In this lesson we shall continue discussing various other situations for finding particular

integral.

32.1 Rule III: F (x) is a polynomial of degree l

Take out the lowest degree term fromf(D), so as to reduce it in the form[1±f(D)]n. Take

it to numerator, i.e.,[1± f(D)]−n and expand it in ascending powers ofD with the help of

Binomial series:

(1 + x)α = 1 + αx+
α(α− 1)

2!
x2 +

α(α− 1)(α− 2)

3!
x3 + ...

Note that in the expansion we do not need to consider terms with power more thanl, since

l + 1th and higher order derivatives of the polynomial of degreel will be zero.

32.1.1 Example

Solve the differential equation (D2 +D)y = x2 + 2x+ 4

Solution: The characteristic equation of the corresponding homogeneous equation is

(m2 +m) = 0 ⇒ m = 0,−1.

The complementary function isc1 + c2e
−x. The particular integral is

P.I. =
1

D2 +D
x2 + 2x+ 4 =

1

D

1

(1 +D)
x2 + 2x+ 4

Taking1 +D into numerator and expending this into an infinite series we get

P.I. =
1

D
(1−D +D2

−D3 + ...)(x2 + 2x+ 4) =
1

D
(x2 + 2x+ 4− 2x− 2 + 2)
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Operating1/D on each term, we obtainP.I. =
1

D
(x2 + 4) = (x3/3 + 4x). The desired gen-

eral solution is

y = c1 + c2e
−x +

(

x3

3
+ 4x

)

.

32.2 Rule IV: F (x) is of the form eαxV , where V is any function of x

Using shift property of the operator discussed in the last lesson we can easily prove that

1

f(D)
eαxV = eαx

1

f(D + α)
V.

32.2.1 Example

Solve (D2
− 2D + 1)y = x2ex.

Solution: The characteristic equation and its roots are

m2
− 2m+ 1 = 0, and m = 1, 1.

Thus, the complimentary function is

C.F. = (c1 + c2x)e
x

The particular integral is

P.I. =
1

D2 − 2D + 1
x2ex =

1

(D − 1)2
x2ex

Using shift property we get

P.I. = ex
1

(D − 1 + 1)2
x2,

= ex
1

D2
x2 = ex

1

D

(

1

D
x2
)

= ex
1

D

(

x3

3

)

= ex
x4

12
.

The required solution isy = (c1 + c2x)e
x + ex

x4

12
.
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32.3 Rule V: F (x) is of the form xV , where V is any function of x

Here, we prove the following result

1

f(D)
(xV ) = x

1

f(D)
V +

d

dD

(

1

f(D)

)

V

whereV is a function ofx. We start with the fact that for a given functiong(x) we have

D (xg(x)) = xD (g(x)) + g(x)

Which can be rewritten as

D (xg(x)) = xD (g(x)) +

(

d

dD
D

)

(g(x))

OperatingD once more and after simplifications we obtain

D2 (xg(x)) = xD2 (g(x)) +

(

d

dD
D2

)

(g(x))

In general, by the method of induction for any natural numbern we can show that

Dn (xg(x)) = xDn (g(x)) +

(

d

dD
Dn

)

g(x)

Direct implication of the above result leads

f(D) (xg(x)) = xf(D) (g(x)) +

(

d

dD
f(D)

)

g(x) (32.1)

Let us assume thatf(D)g(x) = V (x) so that we have

g(x) =
1

f(D)
V (x)

Substitutingg(x) in Equation (32.1) we get

f(D)

(

x
1

f(D)
V (x)

)

= xf(D)

(

1

f(D)
V (x)

)

+

(

d

dD
f(D)

)(

1

f(D)
V (x)

)

or

f(D)

(

x
1

f(D)
V (x)

)

= xV (x) +

(

d

dD
f(D)

)(

1

f(D)
V (x)

)
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This implies

xV (x) = f(D)

(

x
1

f(D)
V (x)

)

−

(

d

dD
f(D)

)(

1

f(D)
V (x)

)

Operating the above equation by1/f(D) we get

1

f(D)
(xV (x)) = x

1

f(D)
V (x)−

(

d

dD
f(D)

)(

1

f(D)2
V (x)

)

Equivalently, we have the final result

1

f(D)
(xV (x)) = x

1

f(D)
V (x) +

d

dD

(

1

f(D)

)

V (x)

32.3.1 Example

Solve (D2 + 9)y = x sin x

Solution: The roots of the characteristic equations are±3i. Hence, the complimentary

function is given by

C.F. = (c1 cos 3x+ c2 sin 3x)

The particular integral is

P.I. =
1

D2 + 9
x sin x

Using Rule V, we get

P.I. = x
1

D2 + 9
sin x+

d

dD

(

1

D2 + 9

)

sin x

This can be now evaluated as

P.I. =x
1

8
sin x−

2D

(D2 + 9)2
sin x =

1

8
x sin x−

2D

64
sin x =

1

8
x sin x−

1

32
cos x

The required general solution is

y = (c1 cos 3x+ c2 sin 3x) +
1

8
x sin x−

1

32
cosx
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32.4 Rule VI: F (x) is of the form xm sinαx or xm cosαx

In this case Rule IV or Rule V can be applied. For the application of rule IV we should

note that

1.
1

f(D)
xm sinαx = Im

(

1

f(D)
xmeiαx

)

2.
1

f(D)
xm cosαx = Re

(

1

f(D)
xmeiαx

)

.

32.4.1 Example

Find a particular integral of (D2 + 1)y = x2 sin 2x

Solution The particular integral is

P.I. =
1

D2 + 1
x2 sin 2x = Im

1

D2 + 1
x2e2ix

Applying Rule IV, we get the particular integral as

P.I. =Im

(

e2ix
1

(D + 2i)2 + 1
x2
)

= Im

(

e2ix
1

D2 + 4Di− 3
x2
)

P.I. =Im

(

e2ix

−3

[

1−

(

4iD

3
+

D2

3

)]

−1

x2

)

Using the Binomial expansion, we get

=Im

(

e2ix

−3

[

1 +

(

4iD

3
+

D2

3

)

+

(

4iD

3
+

D2

3

)2

...

]

x2

)

=Im

(

e2ix

−3

[

1 +
4iD

3
+

D2

3
−

16D2

9
+ ...

]

x2
)

=Im

(

−
1

3
(cos 2x+ i sin 2x)

[

x2 −
8ix

3
−

26

9

])

Collecting the imaginary part we have

P.I. =−
1

3

[(

x2 −
26

9

)

sin 2x+
8

3
x cos 2x

]

.

5 www.AgriMoon.Com275



Linear Differential Equation of Higher Order (Cont.)
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Module 3: Ordinary Differential Equations

Lesson 33

Method of Undetermined Coefficients

In the last lesson we have discussed operator method of finding particular integral. In

this lesson we lean method of undetermined coefficients for finding particular integral of

non-homogeneous differential equations. This method is relatively easier to apply once a

possible form of a particular integral is known. This methodis mainly applicable to linear

differential equations with constant coefficients.

33.1 Method of Undetermined Coefficients

The method of undetermined coefficients requires that we make an initial assumption

about the form of a particular solution of the differential equation, but with the coeffi-

cients left unspecified. We then substitute the assumed expression into the given differ-

ential equation and attempt to determine the coefficients soas to satisfy that differential

equation. If we are successful, then we have found a particular solution of the differential

equation. If we cannot determine the coefficients, then thismeans that there is no solution

of the form that we assumed. In this case we may modify the initial assumption and try

again.

The main advantage of the method of undetermined coefficients is that it is straightfor-

ward to execute once the assumption is made as to the form of the particular solution. Its

major limitation is that it is useful primarily for equations for which we can easily write

down the correct form of the particular solution in advance.This method is usually used

only for problems in which the homogeneous equation has constant coefficients and the

nonhomogeneous term is restricted to a relatively small class of functions. In particular,

we consider only nonhomogeneous terms that consist of polynomials, exponential func-

tions, sines, and cosines. Despite this limitation, the method of undetermined coefficients

is useful for solving many problems that have important applications.

We shall demonstrate the method by taking a couple of different examples.
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33.2 Example Problems

33.2.1 Problem 1

Solve the following initial value problem

y′′ + 5y′ + 6y = 2x+ 1 (33.1)

with the initial conditionsy(0) = 0 andy′(0) = 1

3
.

Solution: First we solve the corresponding homogeneous equation. Thecharacteristic

equation is

m2 + 5m+ 6 ⇒ m = −2,−3.

Hence the complementary function is

C.F. = C1e
−2x + C2e

−3x.

To find particular integral, the trick is to somehow to guess one particular solution to

Equation (33.1). Note that2x + 1 is a polynomial, and the left hand side of the equation

will be a polynomial if we lety be a polynomial of the same degree. Let us try

yp = Ax+B

We plug in to the differential equation to obtain

y′′p + 5y′p + 6yp =(Ax+B)′′ + 5(Ax+B)′ + 6(Ax+B)

=0 + 5A+ 6Ax+ 6B = 6Ax+ (5A+ 6B).

So6Ax+ (5A+ 6B) = 2x+ 1. Therefore,

A =
1

3
andB =

−1

9

That means

yp =
1

3
x−

1

9
=

3x− 1

9

Hence the general solution to (33.1) is

y = C1e
−2x + C2e

−3x +
3x− 1

9
.
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The general solution must satisfy the given initial conditions. First find

y′ = −2C1e
−2x − 3C2e

−3x +
1

3

Then

0 = y(0) = C1 + C2 −
1

9
,

1

3
= y′(0) = −2C1 − 3C2 +

1

3
.

We solve to getC1 = 1/3 andC2 = −2/9. The particular solution we want is

y(x) =
1

3
e−2x −

2

9
e−3x +

3x− 1

9
=

3e−2x − 2e−3x + 3x− 1

9
.

33.2.2 Problem 2

Find a particular solution of the differential equation

y′′ + 2y′ + 2y = cos(2x).

Solution: We start by guessing the solution that includes some multiple of cos(2x). We

may have to also add a multiple ofsin(2x) to our guess since derivatives of cosine are

sines. We try

yp = A cos(2x) +B sin(2x).

We plugyp into the equation and we get

−4A cos(2x)− 4B sin(2x)− 4A sin(2x) + 4B cos(2x) + 2A cos(2x) + 2B sin(2x) = cos(2x).

The left hand side must equal to right hand side. We group terms and get−4A+4B+2A =

1 and−4B − 4A + 2B = 0. So−2A + 4B = 1 and2A + B = 0 and henceA = −1

10
and

B = 1

5
. Hence a particular solution is

yp = A cos(2x) +B sin(2x) =
− cos(2x) + 2 sin(2x)

10
.

Remark 1: If the right hand side contains exponentials we try exponentials. For

example, for

Ly = e3x,

we will try y = Ae3x as our guess and try to solve forA.
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Remark 2: If the right hand side is a multiple of sines, cosines, exponentials, and

polynomials, we can use the product rule for differentiation to come up with a guess. We

need to guess a form foryp such thatLyp is of the same form, and has all the terms needed

to for the right hand side. For example,

Ly = (1 + 3x2) e−x cos(πx).

For this equation, we will guess

yp = (A +Bx+ Cx2) e−x cos(πx) + (D + Ex+ Fx2) e−x sin(πx).

We will plug in and then hopefully get equations that we can solve forA,B,C,D,E, and

F .

Remark 3: If the right hand side has several terms, such as

Ly = e2x + cosx.

In this case we findu that solvesLu = e2x andv that solvesLv = cosx (that is, do each

term separately). Then note that ify = u + v, thenLy = e2x + cosx. This is becauseL is

linear; we haveLy = L(u+ v) = Lu+ Lv = e2x + cosx.

33.2.3 Problem 3

Find a particular solution of

y′′ − 3y′ − 4y = 3e2t + 2 sin t− 8et cos 2t.

Solution: By splitting up the right side of the given differential equation, we obtain the

three differential equations

y′′ − 3y′ − 4y = 3e2t, y′′ − 3y′ − 4y = 2 sin t, y′′ − 3y′ − 4y = 8et cos 2t

Solutions of these three equations can be found with appropriate guess of the particular

integral discussed above. Finally, a particular solution is their sum, namely,

Y (t) =
1

2
e2t +

3

17
cos t

5

17
sin t +

10

13
etcos2t+

2

13
et sin 2t.
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The procedure illustrated in these examples enables us to solve a large class of problems

in a reasonably efficient manner. However, there is one difficulty that sometimes occurs.

It could be that our guess actually solves the associated homogeneous equation. The next

example illustrates how it arises.

33.2.4 Problem 4

Solve the following differential equation

y′′ − 9y = e3x

Solution: In order to find a particular integral an intelligent guess would bey = Ae3x, but

if we plug this into the left hand side of the equation we get

y′′ − 9y = 9Ae3x − 9Ae3x = 0 6= e3x.

There is no way we can chooseA to make the left hand side bee3x because our guess sat-

isfies homogeneous equation. Note that the general solutionof the homogeneous equation

is

C.F. = C1e
−3x + C2e

3x

Thus our assumed particular solution is actually a solutionof the corresponding homo-

geneous equation; consequently, it cannot possibly be a solution of the nonhomogeneous

equation. To find a particular solution we must therefore consider functions of a some-

what different form. We modify our guess toy = Axe3x and notice there is no difficulty

anymore. Note thaty′ = Ae3x + 3Axe3x andy′′ = 6Ae3x + 9Axe3x. So

y′′ − 9y = 6Ae3x + 9Axe3x − 9Axe3x = 6Ae3x.

Thus6Ae3x is supposed to equale3x. Hence,6A = 1 and soA = 1

6
. We can now write the

general solution as

y = yc + yp = C1e
−3x + C2e

3x +
1

6
xe3x.

33.2.5 Problem 5

Find a particular solution of

y′′ + 4y = 3 cos 2t
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Solution: First we write its complimentary function

C.F. = c1 cos 2t+ c2 sin 2t

As in earlier example, we guess

yp = At cos 2t+Bt sin 2t

Then, upon calculatingy′p andY ′′

p , substituting them into the given differential equation,

we find that

4A sin 2t+ 4B cos 2t = 3cos2t

ThereforeA = 0 andB = 3/4, so a particular solution of the given differential equation is

yp(t) =
3

4
t sin 2t

Remark 4: It is also possible that multiplying byx does not get rid of the problem we

had faced in last two examples. For example,

y′′ − 6y′ + 9y = e3x.

The complementary solution isyc = C1e
3x + C2xe

3x. Guessingy = Ae3x or y = Axe3x

would not get us anywhere. In this case we will guessyp = Ax2e3x.
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Module 3: Ordinary Differential Equations

Lesson 34

Method of Variation of Parameters

In the last lesson we have discussed method of undetermined coefficients for finding par-

ticular integral. In this lesson we lean another rather general method, called method of

variation of parameters, of finding particular integral of non-homogeneous differential

equation. In contrast to the method of undetermined coefficients, this method is also ap-

plicable for solving linear equations with variable coefficients. For the sake of simplicity

we restrict ourselves for second order linear differentialequations. However the method

is also applicable for higher order linear differential equations.

34.1 Method of Variation of Parameters

Consider a second order differential equation of the form

y′′ + Py′ +Qy = R (34.1)

whereP,Q,R are functions ofx or constants. Ifu andv are two linearly independent

solutions of the corresponding homogeneous differential equation

y′′ + Py′ +Qy = 0 (34.2)

Then, the complimentary function is

y = au+ bv (34.3)

wherea, b are two arbitrary constants andu, v are functions ofx. Sinceu andv are solu-

tions of (34.2), we have

u′′ + Pu′ +Qu = 0, v′′ + Pv′ +Qv = 0. (34.4)

The method of variation of parameters relies on finding a particular integral of nonhomo-

geneous equation by replacing constantsa andb with functions ofx. The aim is to find

functionsA(x) andB(x) such that

yp = Au+Bv (34.5)
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is a particular integral of (34.1). To determineA(x) andB(x) we need to have two equa-

tions. These are obtained as follows. First we compute

y′
p
= Au′ +Bv′ + A′u+B′v (34.6)

In order to avoid second order derivatives ofA andB and to simplify the above expression

we take

A′u+B′v = 0, (34.7)

Now, the Equation (34.6) reduces to

y′
p
= Au′ +Bv′ (34.8)

Differentiating (34.8), we obtain

y′′
p
= A′u′ + Au′′ +B′v′ +Bv′′ (34.9)

Using the values ofy, y′ andy′′ given by (34.5), (34.8) and (34.9) into the Equation (34.1),

we get

A′u′ + Au′′ +B′v′ +Bv′′ + P (Au′ +Bv′) +Q(Au+Bv) = R

Further simplifications lead to

A(u′′ + Pu′ +Qu) +B(v′′ + Pv′ +Qv) + A′u′ +B′v′ = R

Using Equation (34.4) we get

A′u′ +B′v′ = R (34.10)

Solving (34.7) and (34.10) forA′ andB′, we get

A′ =
−vR

W
, and B′ =

uR

W
(34.11)

whereW is Wronskian ofu and v, and given byW = uv′ − u′v 6= 0. Note that the

Wronskian is nonzero becauseu andv are two linearly independent solutions. Integrating

(34.11), we get

A = f(x), B = g(x), (34.12)
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where

f(x) = −

∫

vR

W
dx, g(x) =

∫

uR

W
dx

Using (34.12) into (34.5), we have

yp = uf(x) + vg(x).

Hence, the general solution of the given differential equation is

yp = au+ bv + uf(x) + vg(x).

34.2 Example Problems

34.2.1 Problem 1

Solve the differential equationy′′ + n2y = sec nx.

Solution: Comparing the given equation with the standard equationy′′ + Py′ + Qy = R,

we getP = 0, Q = n2 andR = sec nx. The characteristic equation of the corresponding

homogeneous equation is

(m2 + n2)y = 0, so that m = ±in

The complimentary function is

C.F. = (c1 cosnx+ c2 sin nx)

In order to find a particular integral, we haveu = cosnx andv = sinnx andR = sec nx.

The Wronskian is given as

W =

∣

∣

∣

∣

∣

cos nx sinnx

−n sinnx n cosnx

∣

∣

∣

∣

∣

= n 6= 0.

Then, the particular integral of the given equation is

P.I. = uf(x) + vg(x)

where

f(x) = −

∫

vR

W
dx = −

∫

sinnx sec nx

n
dx =

1

n2
ln(cosnx)
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and

g(x) =

∫

uR

W
dx = −

∫

cos nx sec nx

n
dx =

x

n

Hence, the required solution is

y = (c1 cosnx+ c2 sinnx) + cosnx
1

n2
ln(cosnx) +

x

n
sinnx

34.2.2 Problem 2

Find the general solution of the differential equationy′′ + n2y = tannx.

Solution: We compare the given equation withy′′ + Py′ +Qy = R to haveP = 0, Q = n2

andR = tannx. Similar to the previous example, we have the complimentaryfunction as

C.F. = (c1 cosnx+ c2 sin nx)

To find particular integral we haveu = cosnx, v = sinnx, R = sec nx. The Wronskian is

given by

W =

∣

∣

∣

∣

∣

cos nx sinnx

−n sinnx n cosnx

∣

∣

∣

∣

∣

= n 6= 0.

The particular integral is

P.I. = uf(x) + vg(x)

where

f(x) = −

∫

vR

W
dx = −

∫

sinnx tannx

n
dx =

1

n2
[sin nx− ln(secnx+ tannx)]

and

g(x) =

∫

uR

W
dx = −

∫

cosnx tannx

n
dx = −

1

n2
cosnx

The desired general solution is

y = (c1 cosnx+ c2 sinnx) +
cosnx

n2
[sinnx− ln(sec nx+ tannx)]−

1

n2
sinnx cos nx

34.2.3 Problem 3

Solve the differential equation
d2y

dx2
+ n2y = cotnx.
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Solution: Similar to the previous example, the complimentary function is given by

C.F. = (c1 cosnx+ c2 sin nx)

In this case, we haveu = cosnx, v = sinnx andR = cotnx. The Wronskian is given by

W =

∣

∣

∣

∣

∣

cosnx sin nx

−n sin nx n cosnx

∣

∣

∣

∣

∣

= n 6= 0

Then, the particular integral is

P.I. = uf(x) + vg(x)

where

f(x) = −

∫

vR

W
dx = −

∫

sinnx cotnx

n
dx = −

1

n2
sinnx

and

g(x) =

∫

uR

W
dx = −

∫

cosnx cotnx

n
dx =

1

n2

[

cos nx+ ln
(

tan
nx

2

)]

The required solution is

y = (c1 cosnx+ c2 sinnx)−
1

n2
cosnx sin nx+

1

n2

[

cosnx+ ln
(

tan
nx

2

)]

sinnx

34.2.4 Problem 4

Using the method of variation of parameters, find the generalsolution of the differential

equation
d2y

dx2
+ y = sec2 x

Solution: The complimentary function is given by

C.F. = (c1 cos x+ c2 sin x)

Also we haveu = cosx andv = sin x andR = sec2 x and

W =

∣

∣

∣

∣

∣

cosx sin x

− sin x cosx

∣

∣

∣

∣

∣

= 1 6= 0.
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Then, the particular integral is

P.I. = uf(x) + vg(x)

where

f(x) = −

∫

vR

W
dx = −

∫

sin x sec2 xdx = −

∫

sec x tan xdx = − sec x

and

g(x) =

∫

uR

W
dx =

∫

cosx sec2 xdx =

∫

sec xdx = ln[sec x+ tan x]

The required solution is

y = (c1 cosx+ c2 sin x)− cosx sec x+ sin x ln[sec x+ tanx].
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Module 3: Ordinary Differential Equations

Lesson 35

Equations Reducible to Linear Differential Equations with Constant
Coefficients

In this lesson we shall study two special forms of linear equations with variable coeffi-

cients which can be reduced to linear differential equations with constant coefficients by

a suitable substitution. Those special forms which we studyhere are called Cauchy-Euler

homogeneous linear differential equations and Legendre’shomogeneous linear differen-

tial equations.

35.1 Cauchy-Euler Homogeneous Linear Differential Equation

A linear differential equation of the form

a0x
n d

ny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ a2x

n−2 d
n−2y

dxn−2
+ . . .+ any = F (x), (35.1)

wherea1, a2, . . . , an are constants andF is either a constant or a function ofx only, is

called Cauchy-Euler homogeneous linear differential equation. Note that the index ofx

and order of derivative is same in each term of such equations.

Using the symbolsD(= d/dx), D2(= d2/dx2), . . . , Dn(= dn/dxn), the Equation (35.1) be-

comes

(a0x
nDn + a1x

n−1Dn−1 + a2x
n−2Dn−2 + ...+ an)y = F (x) (35.2)

The above equation can be reduced to linear differential equation with constant coeffi-

cients by substituting

x = ez, or ln x = z, so that
dz

dx
=

1

x
(35.3)

Using chain rule for differentiation we obtain

dy

dx
=

dy

dz

dz

dx
=

1

x

dy

dz
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Defining
d

dz
=: D1, we have

x
dy

dx
=

dy

dz
⇔ xDy = D1y

Similarly, for the second order derivative

d2y

dx2
=

d

dx

(

dy

dx

)

=
d

dx

(

1

x

dy

dz

)

= −
1

x2
dy

dz
+

1

x

d

dx

(

dy

dz

)

=−
1

x2
dy

dz
+

1

x

d

dz

(

dy

dz

)

dz

dx
= −

1

x2
dy

dz
+

1

x2
d2y

dz2

Thus, we have

x2
d2y

dx2
=

d2y

dz2
−

dy

dz
⇒ x2D2y = D1(D1 − 1)y.

Similarly, x3D3y = D1(D1 − 1)(D1 − 2)y and so on. In general, we have the relationship

xnDn = D1(D1 − 1)(D1 − 2) . . . (D1 − n+ 1)y

Substituting the above values ofx, xD, x2D2, . . . , xnDn in the Equation (35.1), we get

[a0D1(D1 − 1) . . . (D1 − n + 1) + . . .+ an−2D1(D1 − 1) + an−1D1 + an] y = F (ez) (35.4)

The Equation (35.4) is a linear differential equation with constant coefficients which can

solved with the methods discussed in previous lessons. Finally, by replacingz by ln x we

obtain the desired solution of the given differential equation.

35.2 Example Problems

35.2.1 Problem 1

Solve the differential equation(x2D2 + xD − 4)y = 0.

Solution: Substitutingx = ez ⇒ ln x = z ⇒ xD = D1, x2D2 = D1(D1 − 1), the given

equation reduces to

[D1(D1 − 1) +D1 − 4] y = 0 ⇒ (D2

1 − 4)y = 0
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The roots of the corresponding characteristic equation arem = 2,−2. The required solu-

tion of the transformed equation is

y = c1e
2z + c2e

−2z

Puttinglog x = z, we have the desired solution as

y = c1x
2 + c2x

−2.

Herec1 andc2 are arbitrary constants.

35.2.2 Problem 2

Find the general solution of the differential equation(x2D2 + y)y = 3x2.

Solution: Substitutingx = ez, the given equation reduces to

(D1(D1 − 1) + 1)y = 3e2z ⇒ (D2

1 −D1 + 1)y = 3e2z

The characteristic equation of this differential equationis

(m2 −m+ 1) = 0 ⇒ m = (1± i
√
3)/2

The complimentary function is

C.F. = ez/2
[

c1 cos
(

z
√
3/2

)

+
(

c1 sin z
√
3/2

)]

Substitutingz = ln x, we get

C.F. =
√
x
[

c1 cos
(

ln x
√
3/2

)

+ c1 sin
(

ln x
√
3/2

)]

The particular integral of the transformed equation is

P.I. =
1

D2
1
−D1 + 1

3e2z =
1

22 − 2 + 1
3e2z = e2z

Hence, the desired solution of the given differential equation is

y =
√
x
[

c1 cos
(

ln x
√
3/2

)

+ c1 sin
(

ln x
√
3/2

)]

+ x2

3 www.AgriMoon.Com291
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35.3 Legendre’s Homogeneous Linear Differential Equations

A linear differential equation of the form is

[(a+ bx)na0D
n + a1(a + bx)n−1Dn−1 + a2(a + bx)n−2Dn−2 + ...+ an]y = F (x), (35.5)

wherea, b, a1, a2, ..., an are constants, andF is either a constant or a function ofx only,

is called a Legendre’s homogeneous linear differential equation. Note that the index of

(a + bx) and the order of derivative is same in each term of such equation. To solve the

Equation (35.5), we introduce a new independent variablez such that

a+ bx = ez, or ln(a+ bx) = z, so that b/(a+ bx) = dz/dx. (35.6)

Now, for the first order derivative we have

dy

dx
=

dy

dz

dz

dx
=

b

(a + bx)

dy

dz

This implies

(a+ bx)
dy

dx
= b

dy

dz
⇔ (a+ bx)Dy = bD1y

Similarly for the second order derivative we get

d2y

dx2
=

d

dx

(

dy

dx

)

=
d

dx

(

b

(a+ bx)

dy

dz

)

This can be further simplified to get

d2y

dx2
=−

b2

(a+ bx)2
dy

dz
+

b

(a+ bx)

d

dx

(

dy

dz

)

=−
b2

(a+ bx)2
dy

dz
+

b

(a+ bx)

d

dz

(

dy

dz

)

dz

dx

Substitutingdz/dx from Equation (35.6), we obtain

d2y

dx2
= −

b2

(a + bx)2
dy

dz
+

b2

(a + bx)2
d2y

dz2

This gives us

(a + bx)2
d2y

dx2
= b2

(

d2y

dz2
−

dy

dz

)

⇔ (a+ bx)2D2y = b2D1(D1 − 1)y

4 www.AgriMoon.Com292
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In general, we have

(a+ bx)nDn = bnD1(D1 − 1)(D1 − 2) . . . (D1 − n+ 1)y

Substituting the above values of(a + bx), (a + bx)D, (a + bx)2D2, . . . , (a + bx)nDn in the

Equation (35.5), we get the following linear differential equation with constant coeffi-

cients

[

a0b
nD1(D1 − 1)...(D1 − n + 1) + ... + an−2b

2D1(D1 − 1) + an−1bD1 + an
]

y = F

(

ez − a

b

)

The methods of solving this transformed equation are same asdiscussed in previous sec-

tion.

35.3.1 Example

Solve the differential equation

(1 + x)4
d3y

dx3
+ 2(1 + x)3

d2y

dx2
− (1 + x)2

dy

dx
+ (1 + x)y =

1

(1 + x)

Solution: UsingD =
d

dx
and dividing both sides by(x+1), the given differential equation

can be rewritten as

[

(1 + x)3D3 + 2(1 + x)2D2 − (1 + x)D + 1
]

y = (1 + x)−2.

This is the Legendre’s homogeneous linear equation which can be solved by substituting

(1 + x) = ez ⇔ ln(1 + x) = z

This substitution readily implies

(1 + x)D = D1, (1 + x)2D2 = D1(D1 − 1), (1 + x)3D3 = D1(D1 − 1)(D1 − 2)

The given differential equation reduces to

[D1(D1 − 1)(D1 − 2) + 2D1(D1 − 1)−D1 + 1] y = e−2z

or
(

D3

1 −D2

1 −D1 + 1
)

y = e−2z
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The characteristic equation of the corresponding homogeneous equation is

(

m3 −m2 −m+ 1
)

y = 0

The roots of the characteristics equations arem = 1, 1,−1. Hence the complimentary

function of the transformed differential equation is

C.F. = (c1 + c2z)e
z + c3e

−z

The particular integral of the transformed differential equation can be found as

P.I. =
1

(D3
1
−D2

1
−D1 + 1)

e−2z

=
1

−23 − 22 + 2 + 1
e−2z

=−
1

9
e−2z

Hence the general solution of the transformed differentialequation is

y = (c1 + c2z)e
z + c3e

−z −
1

9
e−2z

Replacingz by ln(1 + x) we obtain the desired solution of the given differential equation

y = [c1 + c2 ln(1 + x)] (1 + x) +
c3

(1 + x)
−

1

9

1

(1 + x)
.

Suggested Readings
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Kreyszig, E. (1993). Advanced Engineering Mathematics. Seventh Edition, John Willey
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Module 3: Ordinary Differential Equations

Lesson 36

Methods for Solving Simultaneous Ordinary Differential Equations

In this lesson we shall consider systems of simultaneous linear differential equations

which contain a single independent variable and two or more dependent variables. We

will consider two different techniques, mainly the method of elimination and the method

of differentiation, for solving system of differential equations.

36.1 Simultaneous Ordinary Linear Differential Equations

Let x andy be the dependent andt be the independent variable. Thus, in such equations

there occur differential coefficients ofx, y with respect tot. Let D = d/dt, then such

equations can be put into the form

f1(D)x+ f2(D)y = T1 (36.1)

g1(D)x+ g2(D)y = T2 (36.2)

whereT1 andT2 are functions of the independent variablet andf1(D), f2(D), g1(D), and

g2(D) are all rational integral functions ofD with constant coefficients. In general, the

number of equations will be equal to the number of dependent variables, i.e., if there are

n dependent variables there will ben equations.

36.2 Method of Elimination

In order to eliminatey between equations (36.1) and (36.2), operating on both sides of

(36.1) byg2(D) and on both sides of (36.2) byf2(D) and subtracting, we get

(f1(D)g2(D)− g1(D)f2(D))x = g2(D)T1 − f2(D)T2 (36.3)

This is a linear differential equation with constant coefficients inx andt and can be solved

to give the value ofx in terms oft. Substituting this value ofx in either (36.1) or (36.2),

we get the value ofy in terms oft.
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Remark 1: The above Equations(36.1)and (36.2)can be also solved by first elimi-

natingx between them and solving the resulting equation to gety in terms oft. Substitut-

ing this value ofy in either(36.1)or (36.2), we get the value ofx in terms oft.

Remark 2: In the general solutions of(36.1) and (36.2) the number of arbitrary

constants will be equal to the sum of the orders of the equations(36.1)and (36.2).

36.3 Example Problems

36.3.1 Problem 1

Solve the simultaneous equations

dx

dt
− 7x+ y = 0 (36.4)

dy

dt
− 2x− 5y = 0 (36.5)

Solution: Writing D for d/dt, the given equations can be rewritten in the following

symbolic form as

(D − 7)x+ y = 0 (36.6)

−2x+ (D − 5)y = 0 (36.7)

Now, we eliminatex by multiplying Equation (36.6) by2 and operating (36.7) by(D− 7)

as follows

2(D − 7)x+ 2y = 0 (36.8)

−2(D − 7)x+ (D − 7)(D − 5)y = 0 (36.9)

Adding (36.8) and (36.9), we get

[(D − 7)(D − 5) + 2]y = 0

or

(D2
− 12D + 37)y = 0
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This is a linear equation with constants coefficients. Its auxiliary equation is

(m2
− 12m+ 37) = 0

The roots of the auxiliary equation arem = 6 ± i. Therefore, we get the general solution

for the variabley as

y = e6t(c1 cos t + c2 sin t), (36.10)

wherec1 andc2 being arbitrary constants. We now findx by using Equation (36.7). Now

from (36.10), differentiating w.r.t.t, we get

Dy = 6e6t[(c1 cos t+ c2 sin t) + e6t(−c1 sin t+ c2 cos t)],

or on simplifications we obtain

Dy = 6e6t[(6c1 + c2) cos t+ (−c1 + 6c2) sin t] (36.11)

Now, substitutingy andDy in the Equation (36.7), we get

x = (1/2)× e6t[(c1 + c2) cos t + (−c1 + c2) sin t] (36.12)

Thus, equations (36.10) and (36.12) give the desired general solution.

36.3.2 Problem 2

Solve the linear system of differential equations

D2y − y + 5Dv = x (36.13)

2Dy −D2v + 4v = 2 (36.14)

Solution: Multiplying (36.13) by2D and (36.14) by(D2
−1) and then subtracting (36.14)

from the Equation (36.13) we obtain

[10D2 + (D2
− 1)(D2

− 4)]v = 2Dx− (D2
− 1)2

or

(D4 + 5D2 + 4)v = 4 (36.15)
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This is a linear differential equations with constant coefficients whose solution can easily

be found. The characteristic equation of the correspondinghomogeneous equation is

m4 + 5m2 + 4 = 0 ⇒ (m2 + 1)(m2 + 4) = 0 ⇒ m = ±i,±2i

The complimentary function is

C.F. = c1 cosx++c2 sin x+ c3 cos 2x+ c4 sin 2x

The particular integral is

P.I. =
1

D4 + 5D2 + 4
4e0x = 1

We write the general solution forv as

v = 1 + c1 cosx+ c2 sin x+ c3 cos 2x+ c4 sin 2x (36.16)

Now we find an equation givingy in terms ofv. This can be done by eliminating from the

equations (36.13) and (36.14) those terms which involve derivatives of y. So multiplying

Equation (36.13) by 2 and Equation (36.14) byD we get

(2D2
− 2)y + 10Dv = 2x (36.17)

2D2y − (D3
− 4D)v = 0 (36.18)

Subtracting (36.17) from (36.18) we get

2y −D3v − 6Dv = −2x (36.19)

or

y = −x+
1

2
D3v + 3Dv (36.20)

Substitutev from (36.16) into the Equation (36.21) to obtain the expression for y as

y = −x−
5

2
c1 cos x+

5

2
c2 cosx+ 2c4 cos 4x− 2c3 sin 2x, (36.21)

wherec1, c2, c3 andc4 are arbitrary constants.
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36.4 Method of Differentiation

Sometimes,x andy can be eliminated if we differentiate (36.1) or (36.2). For example,

assume that the given equations (36.1) and (36.2) relates four quantitiesx, y, dx/dt and

dy/dt. Differentiating (36.1) and (36.2) with respect tot, we obtain four equations con-

taining x, dx/dt, d2x/dt2, y, dy/dt andd2y/dt2. Eliminating three quantitiesy, dy/dt and

d2y/dt2 from these four equations,y is eliminated and we get an equation of the second

order withx as the dependent andt as the independent variable. Solving this equation we

get value ofx in terms oft. Substituting this value ofx in either (36.1) or (36.2), we get

value ofy in terms oft. The technique will be illustrated by the following example.

36.4.1 Example

Determine the general solutions forx andy for

dx

dt
− y = t

dy

dt
+ x = 1

Solution: Writing D for d/dt, the given equations become

Dx− y = t (36.22)

x+Dy = 1 (36.23)

Differentiating the equation Equation (36.22) w.r.t.t we get

D2x−Dy = 1 (36.24)

Now we can eliminatey by adding equations (36.24) and (36.23) to get

(D2 + 1)x = 2 (36.25)

The auxiliary equation of the above differential equation ism2 + 1 = 0 and therefore the

general solution of the homogeneous equation is

C.F. = c1 cos t+ c2 sin t
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wherec1 andc2 are arbitrary constants. The particular integral is

P.I =
1

D2 + 1
2 = (1 +D2)−12 = (1−D2 + ...)2 = 2

Hence, the general solution of (36.25) is

x = c1 cos t+ c2 sin t+ 2 (36.26)

From Equation (36.22), we get

y = c2 cos t− c1 sin t− t (36.27)

Thus, the required solution is given by (36.26) and (36.27).
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Module 3: Ordinary Differential Equations

Lesson 37

Series Solutions about an Ordinary Point

37.1 Introduction

If we can’t find a solution to a differential equations in a form of nice functions, we can

still look for a series representation of the solution. Series solutions are very useful be-

cause if we know that the series converges, we can approximate the solution as closely as

we want. In this lesson we describe series solutions of solving second order linear homo-

geneous differential equations with variables coefficients. Series solution can be used in

conjunction with variation of parameters to solve linear nonhomogeneous equations. For

simplicity, we shall be dealing mainly with polynomial coefficients. Here we consider the

second order homogeneous equation of the form

P (x)y′′ +Q(x)y′ +R(x)y = 0 (37.1)

whereP,Q andR are polynomials or analytic functions in general. Many problems in

mathematical physics leads to equations of the form (37.1) having polynomial coeffi-

cients; for example, the Bessel equation

x2y′′ + xy′ + (x2a2)y = 0,

wherea is a constant, and the Legendre equation

(1− x)2y′′ − 2xy′ + c(c+ 1)y = 0

where c is a constant.

37.2 Useful Definitions

Here we provide some definitions which will be very useful forfinding series solution of

the differential equations.
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37.2.1 Analytic Function

A function f(x) defined on an interval containing the pointx = x0 is called analytic atx0
if its Taylor series,

∞
∑

n=0

f (n)(x0)

n!
(x− x0) (37.2)

exists and converges tof(x) for all x in the interval of convergence of (37.2).

37.2.2 Ordinary Points

A point x = x0 is called an ordinary point of the Equation (37.1) ifP , Q, andR are

polynomials that do not have any common factors, then a pointx0 is called an ordinary

point if P (x0) 6= 0. A point x1 whereP (x1) = 0 is called a singular point. If any ofP , Q,

or R is not a polynomial, then we callx0 an ordinary point ifQ(x)/P (x) andR(x)/P (x)

are analytic aboutx0.

It is often useful to rewrite Equation (37.1) as

y′′ + p(x)y′ + q(x)y = 0 (37.3)

wherep(x) = Q(x)/P (x) andq(x) = R(x)/P (x). The Equation (37.3) is called equivalent

normalized form of the Equation (37.1).

37.2.3 Singular Points

If the pointx = x0 is not an ordinary point of the differential Equation (37.1)or (37.3),

then it is called a singular point of the differential equation of (37.3). There are two types

of singular points:(i) regular singular points, and(ii) irregular singular points. A singular

point x = x0 of the differential Equation (37.3) is called a regular singular point of the

differential Equation (37.3) if both

(x− x0)p(x) and(x− x0)
2q(x)

are analytic atx = x0. A singular point, which is not regular is called an irregularsingular

point.
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37.3 Example Problems

37.3.1 Problem 1

Show that x = 0 is an ordinary point of (x2 − 1)y′′ + xy′ − y = 0, but x = 1 is a regular

singular point.

Solution: Writing the given equation in normalized form

d2y

dx2
+

x

(x− 1)(x+ 1)

dy

dx
−

1

(x− 1)(x+ 1)
y = 0. (37.4)

Comparing (37.4) with the standard equationy′′ + p(x)y′ + q(x)y = 0, we have

p(x) = x/(x− 1)(x+ 1) andq(x) = −1/(x− 1)(x+ 1).

Since bothp(x) andq(x) are analytic atx = 0, the pointx = 0 is an ordinary point of the

given Equation (37.4). Further note that bothp(x) andq(x) are not analytic atx = 1, thus

x = 1 is not an ordinary point and sox = 1 is a singular point. Also

(x− 1)P (x) = x/(x+ 1) and(x− 1)2Q(x) = −(x− 1)/(x+ 1)

show that both(x − 1)P (x) and(x − 1)2Q(x) are analytic atx = 1. Thereforex = 1 is a

regular singular point.

37.3.2 Problem 2

Determine whether the point x = 0 is an ordinary point or regular point of the differential

equation

xy′′ + sin(x)y + x2y = 0

Solution: Comparing with the normalized equation we get

p(x) =
sin x

x
andq(x) = x

Sincep(x) andq(x) both are analytic atx = 0, the pointx = 0 is an ordinary point. This

example shows that singular point does not always occur whereP (x) = 0.
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37.3.3 Problem 3

Discuss the singular points of the differential equation

x2(x− 2)2y′′ + (x− 2)y′ + 3x2y = 0.

Solution: Clearly the function

p(x) =
1

(x2(x− 2))

is not analytic atx = 0 andx = 2. Also the function

q(x) =
3

((x− 2)2)

is not analytic atx = 2. Hence bothx = 0 andx = 2 are singular point of the differential

equations. Atx = 0 we have

xp(x) =
1

(x(x− 2))
and x2q(x) =

3x2

(x− 2)2

Note thatx2q(x) is non-singular atx = 0 but xp(x) is not analytic at this point. Hence

x = 0 is an irregular singular point. Atx = 2 we have

(x− 2)p(x) =
1

x2
and (x− 2)2q(x) = 2

Both functions are analytic atx = 2 and hencex = 2 is a regular singular point.

37.4 Brief Overview of Power Series

A power series about a pointx0 is a series of the form

∞
∑

n=0

cn(x− x0)
n

wherex is a variable andcn are constants, called coefficients of the series. There are

three possibilities about the convergence of a power series. The series may converge only

at x = 0 or it may converge for all values ofx. If this is not the case then a definite

positive numberR exists such that the given series converges for every|x − x0| < R and
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diverges for every|x−x0| > R. Such a number is known as the radius of convergence and

]x0 − R, x0 +R[, the interval of convergence, of the given series.

Among several formulas for determining convergence of the power series, ratio test is

most common and simple to use. Given a power series
∑

∞

n=0 cn(x− x0)
n we compute

1

R
= lim

n→∞

∣

∣

∣

∣

cn+1

cn

∣

∣

∣

∣

,

then the series is convergence for|x− x0| < R and divergent|x− x0| > R.

37.4.1 Example

Determine the radius of convergence of the power series

∞
∑

n=1

(x+ 1)n

n2n

Solution: Ratio test gives

lim
n→∞

∣

∣

∣

∣

n2n

(n+ 1)2n+1

∣

∣

∣

∣

=
1

2

Hence the radius of convergence of the power series isR = 2 and the interval of conver-

gence is−3 < x < 1. The convergence at the end pointsx = −3 andx = 1 needs to be

checked separately.

37.5 Power Series Solution near Ordinary Point

Let the given equation be

y′′ + p(x)y′ + q(x)y = 0 (37.5)

If x = x0 is an ordinary point of (37.5), then (37.5) has two non-trivial linearly indepen-

dent power series solutions of the form

∞
∑

n=0

Cn(x− x0)
n (37.6)

and these power series converge in some interval of convergence|x − x0| < R, (whereR

is the radius of convergence of (37.6)) aboutx0.
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To find series solutions we suppose that we have a series representation,

y =
∞
∑

n=0

Cn(x− x0)
n (37.7)

and then to find out coefficientsCn we need to differentiate (37.7) and plug in the deriva-

tives into the Equation (37.6). Once we have the appropriatecoefficients, we call (37.7)

the series solution to (37.5) nearx = x0. More precisely, differentiating twice, the Equa-

tion (37.7) yields

y′ =

∞
∑

n=0

nCn(x− x0)
n−1 and y′′ =

∞
∑

n=0

n(n− 1)Cn(x− x0)
n−2 (37.8)

Substituting the above values ofy, y′ andy′′ in (37.5), we obtain

A0 + A1(x− x0) + A2(x− x0)
2 + . . .+ An(x− x0)

n + . . . = 0, (37.9)

where the coefficientsA0, A1, A2 . . . etc. are now some functions of the coefficientsC0, C1, C2, . . .

etc. Since the Equation (37.9) is an identity, all the coefficientsA0, A1, A2 . . . of (37.9)

must be zero, i.e.,

A0 = 0, A1 = 0, A2 = 0, . . . , An = 0 (37.10)

Solving Equation (37.10), we obtain the coefficients of (37.7) in terms ofC0 andC1.

Substituting these coefficients in (37.7), we obtain the required series solution of (37.5)

in power of(x− x0).

Suggested Readings
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Module 3: Ordinary Differential Equations

Lesson 38

Series Solution about an Ordinary Point (Cont.)

In the last lesson we have discussed series solution of the homogeneous differential equa-

tions. In this lesson we demonstrate the method by using a couple of basic examples. For

demonstration we take first example of a differential equation with constant coefficients

and then some more involved examples will be discussed.

38.1 Example Problems

38.1.1 Problem 1

Determine a series solution to y′′ − y = 0.

Solution: Suppose that the series solution is of the form

y(x) =
∞
∑

n=0

cnxn

Differentiatingy, we have

y′(x) =

∞
∑

n=1

ncnxn−1 and y′′(x) =

∞
∑

n=2

n(n− 1)cnxn−2

Substituting these into the differential equation, we have

∞
∑

n=2

n(n− 1)cnxn−2 −

∞
∑

n=0

cnxn = 0

Re-indexing the first sum

∞
∑

n=0

(n + 2)(n+ 1)cn+2xn −

∞
∑

n=0

cnxn = 0

This implies
∞
∑

n=0

[(n+ 2)(n+ 1)cn+2 − cnxn]xn = 0
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Series Solutions about an Ordinary Point (Cont.)

Since the series is always equal to0 then each coefficient must be zero. Thus we have

(n+ 2)(n+ 1)cn+2 − cn = 0 (38.1)

This can be rewritten in the form of recurrence relation as

cn+2 =
cn

(n+ 2)(n+ 1)
(38.2)

Puttingn = 0, 1, 2 . . ., we get

c2 =
c0
2!
, c3 =

c1
3!
, c4 =

c0
4!
, c5 =

c1
5!
, . . .

In general, we have

c2k =
c0

(2k)!
, c2k+1 =

c1
(2k + 1)!

. . . for k = 1, 2, . . . .

Putting these values into the series and collecting thec0 andc1 terms we get

y(x) = c0

(

1 +
x2

2!
+ . . .+

x2k

(2k)!
+ . . .

)

+ c1

(

x+
x3

3!
+ . . .+

x2k+1

(2k + 1)!
+ . . .

)

This can be further rewritten in summation form as

y(x) = c0

∞
∑

k=0

x2k

(2k)!
+ c1

∞
∑

k=0

x2k+1

(2k + 1)!

This is the desired series solution. It should be noted that this series solution can be

rewritten into the form of well known solutiony(x) = c1e
x+c2e

−x of the given differential

equation as

c1e
x + c2e

−x = c1

(

1 + x+
x2

2!
+ . . .

)

+ c2

(

1− x+
x2

2!
+ . . .

)

This can be rewritten as

c1e
x + c2e

−x = (c1 + c2)

(

1 +
x2

2!
+ . . .

)

+ (c1 − c2)

(

x+
x3

3!
+ . . .

)

Denoting(c1 + c2) =: c0 and(c1 − c2) =: c1 we get

c1e
x + c2e

−x = c0

∞
∑

k=0

x2k

(2k)!
+ c1

∞
∑

k=0

x2k+1

(2k + 1)!

This proves that both representations are equivalent.
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Series Solutions about an Ordinary Point (Cont.)

38.1.2 Problem 2

Find the series solution, about x = 0, of the equation (1− x)2y′′ − 2y = 0 in powers of x.

Solution: Sincex = 0 is an ordinary point and we can therefore get two linearly indepen-

dent solution by substituting

y =
∞
∑

n=0

cnx
n.

After substitution we get

(1− 2x+ x2)

∞
∑

n=2

n(n− 1)cnx
n−2

− 2

∞
∑

n=0

cnx
n = 0,

which leads to
∞
∑

n=2

n(n− 1)cnx
n−2

− 2
∞
∑

n=2

n(n− 1)cnx
n−1 +

∞
∑

n=2

n(n− 1)cnx
n
− 2

∞
∑

n=0

cnx
n = 0

In order to write the series in terms the coefficients ofxn we shift the summation index as
∞
∑

n=0

(n + 2)(n+ 1)cn+2x
n
− 2

∞
∑

n=1

n(n + 1)cn+1x
n +

∞
∑

n=2

n(n− 1)cnx
n
− 2

∞
∑

n=0

cnx
n = 0

The sum in second and third series can also start from 0 without changing the series. This

leads to
∞
∑

n=0

[(n+ 2)(n+ 1)cn+2 − 2n(n+ 1)cn+1 + n(n− 1)cn − 2cn] x
n = 0

This can be further simplified as
∞
∑

n=0

(n+ 1) [(n+ 2)cn+2 − 2ncn+1 + (n− 2)cn] x
n = 0

Equating the coefficients we obtain the recurrence relation

(n + 2)cn+2 − 2ncn+1 + (n− 2)cn = 0.

Puttingn = 0, 1, 2, . . . we get

c2 = c0, c3 =
1

3
(2c0 + c1) =: c, c4 = c, c5 = c . . .

Hence the series solution becomes

y = c0 + c1x+ c0x
2 + c

∞
∑

n=3

xn.
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Series Solutions about an Ordinary Point (Cont.)

38.1.3 Problem 3

Find the power series solution of the equation (x2 + 1)y′′ + xy′ − xy = 0 in powers of x

(i.e. about x = 0).

Solution: Clearlyx = 0 is an ordinary point of the given differential equation. Therefore,

to find the series solution, we take power series

y = c0 + c1x+ c2x
2 + c3x

3 + . . . =

∞
∑

n=0

cnx
n. (38.3)

Differentiating twice in succession, (38.3) gives

y′ =

∞
∑

n=1

ncnx
n−1 and y′′ =

∞
∑

n=1

n(n− 1)cnx
n−2 (38.4)

Putting the above value ofy, y′ andy′′ in the given differential equation, we obtain

(x2 + 1)

∞
∑

n=2

n(n− 1)cnx
n−2 + x

∞
∑

n=1

ncnx
n−1

− x

∞
∑

n=0

ncnx
n = 0

⇒

∞
∑

n=2

n(n− 1)cnx
n +

∞
∑

n=2

n(n− 1)cnx
n−2

−

∞
∑

n=1

ncnx
n
−

∞
∑

n=0

cnx
n+1 = 0

This leads to

∞
∑

n=2

n(n− 1)cnx
n +

∞
∑

n=0

(n+ 2)(n+ 1)cn+2x
n +

∞
∑

n=1

ncnx
n
−

∞
∑

n=1

cn−1x
n = 0

Finally we have the identity

2c2 + (6c3 + c1 − c0)x+

∞
∑

n=2

[n(n− 1)cn + (n+ 2)(n+ 1)cn+2 + ncn − cn−1]x
n = 0.

Equating the constant term and the coefficients of various powers ofx, we get

c2 = 0, 6c3 + C1 − c0 = 0 so thatc3 = (c0 − c1)/6

and the recurrence relation

cn+2 =
cn−1 − n2cn

(n+ 1)(n+ 2)
, for all n ≥ 2. (38.5)
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Series Solutions about an Ordinary Point (Cont.)

Puttingn = 2 in (38.5),c4 = (1/12)c1, asc2 = 0.

Puttingn = 3 in (38.5),c5 = −
9c3
(20) = −

3
40(c0 − c1)

Putting the above values ofc2, c3, c4, c5, . . . ets. in (38.3), we have

y = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + . . .∞

⇒ y = c0 + c1x+ (1/6)(c0 − c1)x
3 + (1/12)c1x

4
− (3/40)(c0 − c1)x

5 + . . .∞

This can be rewritten as

y = c0

(

1 +
1

6
x3 −

3

40
x5 + . . .

)

+ c1

(

x−
1

6
x3 +

1

12
x4 +

3

40
x5 − . . .

)

,

which is the required solution nearx = 0, wherec0 andc1 are arbitrary constants.

38.1.4 Problem 4

Find the power series solution of the initial value problem xy′′ + y′ + 2y = 0, y(1) = 1,

y′(1) = 2 in powers of (x− 1).

Solution: Sincex = 1 is an ordinary point of the given differential equation, we find

series solution

y =

∞
∑

n=0

cn(x− 1)n ⇒ y′ =

∞
∑

n=1

ncn(x− 1)n−1 andy′′ =
∞
∑

n=2

n(n− 1)cn(x− 1)n−2 (38.6)

Substitutingy andy′ in the given differential equation we obtain

[(x− 1) + 1]
∞
∑

n=2

n(n− 1)cn(x− 1)n−2 +
∞
∑

n=1

ncn(x− 1)n−1 + 2
∞
∑

n=0

cn(x− 1)n = 0

This leads to

∞
∑

n=2

n(n−1)cn(x−1)n−1+
∞
∑

n=2

n(n−1)cn(x−1)n−2+
∞
∑

n=1

ncn(x−1)n−1+2
∞
∑

n=0

cn(x−1)n = 0

Shifting summation index of the first three terms we get

∞
∑

n=1

n(n + 1)cn+1(x− 1)n +

∞
∑

n=0

[(n+ 1)(n+ 2)cn+2 + (n+ 1)cn+1 + 2cn](x− 1)n = 0
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Equating the coefficients to zero we get

2c2 + c1 + c0 = 0 ⇒ c2 = −
c1 + c0

2

cn+2 = −
(n + 1)2cn+1 + 2cn
(n+ 1)(n+ 2)

, for all n ≥ 1

Using initial conditions in Equation (38.6) we getc0 = 1 andc1 = 2. Using these values

we obtain

c2 = −2, c3 =
2

3
, c4 = −

1

6
, c5 =

1

15
, . . .

Putting these constants in series we get the desired solution as

y = 1 + 2(x− 1)− 2(x− 1)2 + (2/3)(x− 1)3 − (1/6)(x− 1)4 + (1/15)(x− 1)5 + . . .
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Module 3: Ordinary Differential Equations

Lesson 39

Series Solutions about a Regular Singular Point

39.1 Introduction

In this lesson we discuss series solution about a singular point. In particular, the power

series method discussed in last lessons will be generalized. The generalized power series

method is also known as Frobenius method.

Let us consider a simple first order differential equation2xy′ − y = 0 and try to apply the

power series method discussed in the last lessons. Note thatx = 0 is a singular point. If

we plug in

y =

∞
∑

k=0

akx
k,

into the given differential equation, we obtain

0 = 2xy′ − y = 2x

(

∞
∑

k=1

kakx
k−1

)

−
(

∞
∑

k=0

akx
k

)

= a0 +
∞
∑

k=1

(2kak − ak) x
k.

First,a0 = 0. Next, the only way to solve0 = 2kak − ak = (2k − 1) ak for k = 1, 2, 3, . . . is

for ak = 0 for all k. Therefore we only get the trivial solutiony = 0. We need a nonzero

solution to get the general solution.

39.2 Frobenius Method

Consider the differential equation of the formy′′+ p(x)y′+ q(x)y = 0. Note thatxp(x) and

x2q(x) are analytic atx = 0. We try a series solution of the from

y = xr
∞
∑

n=0

cnx
n = xr(c0 + c1x+ c2x

2 + . . .), wherec0 6= 0
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The derivative ofy with respect tox are given by

y′ =
∞
∑

n=0

(n+ r)cnx
n+r−1

y′′ =
∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r−2

Also, we can write power series corresponding toxp(x) andx2q(x) as

xp(x) =
∞
∑

n=0

anx
n and x2q(x) =

∞
∑

n=0

bnx
n

The given differential equation can be rewritten as

y′′ +
xp(x)

x
y′ +

x2q(x)

x2
y = 0

Substituting all values ofy, y′, y′′, xp(x) and x2q(x) series into the above differential

equation we get

∞
∑

n=0

(n+r)(n+r−1)cnx
n+r−2+

∞
∑

n=0

anx
n−1×

∞
∑

n=0

(n+r)cnx
n+r−1+

∞
∑

n=0

bnx
n−2×

∞
∑

n=0

cnx
n+r = 0

Multiplying by x2 we get

∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r +

∞
∑

n=0

anx
n ×

∞
∑

n=0

(n+ r)cnx
n+r +

∞
∑

n=0

bnx
n ×

∞
∑

n=0

cnx
n+r = 0

We can now equate coefficients of various powers ofx to zero to form a system of equa-

tions involving unknown coefficientscn. Equating the coefficient ofxr we obtain

[r(r − 1) + a0r + b0]c0 = 0

Sincec0 6= 0, we obtain

r2 + (a0 − 1)r + b0 = 0 (39.1)

The above quadratic equation is known as theindicial equationof the given differential

equation. The general solution of the given differential equation depends on the roots of

the indicial equation. There are three possible general cases:
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39.2.1 Case I: The indicial equation has two real roots which do not differ by an

integer

Let r1 andr2 are the roots of the indicial equation. Then the two linearlyindependent

solution will follow from

y1(x) = xr1
∞
∑

n=0

cnz
n y2(x) = xr2

∞
∑

n=0

cnz
n

where c0, c1, . . . are coefficients corresponding tor = r1 and c0, c1, . . . are coefficients

corresponding tor = r2. The general solution will be of the formy = ay1 + by2, wherea

andb are arbitrary coefficients.

39.2.2 Case II: The indicial equation has a doubled root

If the indicial equation has a doubled rootr, then we find one solution

y1 = xr
∞
∑

k=0

akx
k,

and then obtain another solution by plugging

y2 = xr
∞
∑

k=0

bkx
k + (ln x)y1,

into the given equation and solving for the constantsbk.

39.2.3 Case III: The indicial equation has two real roots which differ by an integer

If the indicial equation has two real roots such thatr1 − r2 is an integer, then one solution

is

y1 = xr1
∞
∑

k=0

akx
k,

and the second linearly independent solution is of the form

y2 = xr2
∞
∑

k=0

bkx
k + C(ln x)y1,

where we plugy2 into the given equation and solve for the constantsbk andC.
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Remark 1: Note that the case-I also includes complex numbers because in that case

r1 − r2 will be a complex number which cannot be equal to a real integer.

Remark 2: Note that the mai idea is to find at least one Frobenius-type solution. If

we are lucky and find two, we are done. If we only get one, we either use the ideas above

or the method of variation of parameters to obtain a second solution.

39.3 Working Rules

Now we summarize the working steps of the Frobenius method:

1. We seek a Frobenius-type solution of the formy =
∞
∑

k=0

akx
k+r.

2. We plug thisy into the given differential equation.

3. The obtained series must be zero. Setting the first coefficient (usually the coefficient

of xr) in the series to zero we obtain theindicial equation, which is a quadratic

polynomial inr.

4. If the indicial equation has two real rootsr1 andr2 such thatr1− r2 is not an integer,

then find two linearly independent solutions according to Case-I.

5. If the indicial equation has a doubled rootr, or the indicial equation has two real

roots such thatr1 − r2 is an integer then follow Case-II or Case-III accordingly.

39.3.1 Example

Find the power series solutions aboutx = 0 of

4xy′′ + 2y′ + y = 0

Solution: Clearly,x = 0 is a regular singular point. Comparing withy′′+p(x)y′+q(x)y = 0

we havexp(x) = 1/2 andx2q(x) = x/4. We substitute Frobenius series

y = xr
∞
∑

n=0

cnx
n (39.2)
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into the differential equation to get

∞
∑

n=0

(n + r)(n+ r − 1)cnx
n+r−2 +

1

2x

∞
∑

n=0

(n + r)cnx
n+r−1 +

1

4x

∞
∑

n=0

cnx
n+r = 0

Multiplying by x2 we obtain

∞
∑

n=0

(n+ r)(n+ r − 1)cnx
n+r +

1

2

∞
∑

n=0

(n+ r)cnx
n+r +

1

4

∞
∑

n=0

cnx
n+r+1 = 0 (39.3)

Equating coefficients ofxr to zero and notingc0 6= 0 we obtain indicial equation

r(r − 1) +
1

2
r = 0

which has rootsr = 1/2, 0. These roots are unequal and do not differ by an integer. To

obtain the recurrence relation, we equate to zero the coefficient ofxn+r in Equation (39.3)

and obtain

(n+ r)(n+ r − 1)cn +
1

2
(n + r)cn +

1

4
cn−1 = 0

Corresponding tor = 1/2 we get

(4n2 + 2n)cn + cn−1 = 0 ⇒ cn = − cn−1

2n(2n + 1)
⇒ cn = −c0

(−1)n

(2n+ 1)!

Substituting these values in (39.2), we get one solution as

y1 = c0
√
x

∞
∑

n=0

(−1)n

(2n+ 1)!
xn = c0

(√
z − (

√
z)3

3!
+

(
√
z)5

5!
+ . . .

)

= sin
√
z

To obtain the second solution we user = 0 to get

(4n2 − 2n)cn + cn−1 = 0 ⇒ cn = − cn−1

2n(2n− 1)
⇒ cn =

(−1)n

(2n)!

Hence the second solution is

y2 = c0

∞
∑

n=0

xn = cos(
√
z)

The general solution is given as

y = b cos(
√
z) + b cos(

√
z)

wherea andb are arbitrary constants.
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Lesson 40

Series Solutions about a Regular Singular Point (Cont...)

In this lesson we continue series solution about a singular point. We shall demonstrate the

method with some useful differential equations.

40.1 Example Problems

40.1.1 Problem 1

Find one series solution of the differential equation

4x2y′′ − 4x2y′ + (1− 2x)y = 0,

Solution: Note thatx = 0 is a singular point. Let us try

y = xr
∞
∑

k=0

akx
k =

∞
∑

k=0

akx
k+r,

wherer is a real number, not necessarily an integer. Again if such a solution exists, it may

only exist for positivex. First let us find the derivatives

y′ =

∞
∑

k=0

(k + r) akx
k+r−1,

y′′ =

∞
∑

k=0

(k + r) (k + r − 1) akx
k+r−2.

Plugging into our equation we obtain

4

∞
∑

k=0

(k + r) (k + r − 1) akx
k+r − 4

∞
∑

k=0

(k + r) akx
k+r+1 + (1− 2x)

∞
∑

k=0

akx
k+r = 0

Splitting the last series into two series we get

∞
∑

k=0

4(k + r) (k + r − 1) akx
k+r −

∞
∑

k=0

4(k + r) akx
k+r+1 +

∞
∑

k=0

akx
k+r − 2

∞
∑

k=0

akx
k+r+1 = 0
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Re-indexing leads to

∞
∑

k=0

4(k + r) (k + r − 1) akx
k+r −

∞
∑

k=1

4(k + r − 1) ak−1x
k+r +

∞
∑

k=0

akx
k+r −

∞
∑

k=1

2ak−1x
k+r = 0

Combining different series into one series

(

4r(r − 1) + 1
)

a0 +
∞
∑

k=1

(

(

4(k + r) (k + r − 1) + 1
)

ak −
(

4(k + r − 1) + 2
)

ak−1

)

xk+r.

The indicial equation is given by

4r(r − 1) + 1 = 0

It has a double root atr = 1

2
. All other coefficients ofxk+r also have to be zero so

(

4(k + r) (k + r − 1) + 1
)

ak −
(

4(k + r − 1) + 2
)

ak−1 = 0.

If we plug in r = 1

2
and solve forak, we get

ak =
4(k + 1

2
− 1) + 2

4(k + 1

2
) (k + 1

2
− 1) + 1

ak−1 =
1

k
ak−1.

Let us seta0 = 1. Then

a1 =
1

1
a0 = 1, a2 =

1

2
a1 =

1

2
,

a3 =
1

3
a2 =

1

3 · 2 , a4 =
1

4
a3 =

1

4 · 3 · 2 , . . .

In general, we notice that

ak =
1

k(k − 1)(k − 2) · · ·3 · 2 =
1

k!
.

In other words,

y =
∞
∑

k=0

akx
k+r =

∞
∑

k=0

1

k!
xk+1/2 =

√
x

∞
∑

k=0

1

k!
xk =

√
xex.

So we have one solution of the given differential equation. Here we have written the series

in terms of elementary functions. However this is not alwayspossible.
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40.1.2 Problem 2

Solve theBessel’s equationof orderp.

x2y′′ + xy′ +
(

x2 − p2
)

y = 0. (40.1)

where2p is not an integer.

Solution: We take the following generalized power series

y =

∞
∑

m=0

cmxk+m, c0 6= 0. (40.2)

which implies

y′ =
∞
∑

m=0

cm(k +m)xk+m−1, y′′ =
∞
∑

m=0

cm(k +m)(k +m− 1)xk+m−2

Substitution fory, y′, y′′ in (40.2) gives

x2
∞
∑

m=0

cm(k +m)(k +m− 1)xk+m−2 + x

∞
∑

m=0

cm(k +m)xk+m−1 + (x2 − n2)

∞
∑

m=0

cmxk+m = 0

Combining the first two series we obatin

∞
∑

m=0

cm

{

(k +m)(k +m− 1) + (k +m)− p2
}

xk+m +
∞
∑

m=0

cmxk+m+2 = 0

Further simplifications leads to

∞
∑

m=0

cm(k +m+ p)(k +m− p)xk+m +

∞
∑

m=0

cmxk+m+2 = 0 (40.3)

Equating the smallest power ofx to zero, we get the indicial equation as

c0(k + p)(k − p) = 0, i.e, (k + p)(k − p) = 0, as c0 6= 0.

So the roots of indicial equation arek = p,−p. Next equating to zero the coefficient of

xk+1 in (40.3) gives

c1(k + 1 + p)(k + 1− p) = 0, so that c1 = 0 for k = p and − p.

3 www.AgriMoon.Com321



Series Solutions about a Regular Singular Point (Cont...)

Finally equating to zero the coefficient ofxk+m in (40.3) gives

cm(k +m+ p)(k +m− p) + cm−2 = 0

⇒ cm =
1

(k +m+ p)(p− k −m)
cm−2.

⇒ cm =
1

(k +m+ p)(p− k −m)
cm−2. (40.4)

Puttingm = 3, 5, 7, . . . in (40.4) and usingc1 = 0, we find

c1 = c3 = c5 = c7 = . . . = 0.

Puttingm = 2, 4, 6, . . . in (40.4), we find

c2 =
1

(k + 2 + p)(p− k − 2)
c0

c4 =
1

(k + 4 + p)(p− k − 4)
c2 =

1

(k + 4 + p)(p− k − 4)(k + 2 + p)(p− k − 2)
c0

and so on. Putting these values in (40.2) and also replacingc0 by 1, we get

y =

[

1 +
x2

(k + 2 + p)(p− k − 2)
+

x4

(k + 4 + p)(p− k − 4)(k + 2 + p)(p− k − 2)
+ . . .

]

Replacingk by p and−p in the above equation gives

y1 = xp
[

1− x2

4(1 + p)
+ . . .

]

= xp
∞
∑

k=0

(−1)kx2k

22kk!(k + p)(k − 1 + p) · · · (2 + p)(1 + p)

y2 = x−p

[

1− x2

4(1− p)
+ . . .

]

= x−p
∞
∑

k=0

(−1)kx2k

22kk!(k − p)(k − 1− p) · · · (2− p)(1− p)

Therefore when2p is not an integer, we have the general solution to Bessel’s equation of

orderp

y = c1y1(x) + c2y2(x),

wherec1 andc2 are arbitrary constants.
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Remark: We define the Bessel functions of the first kind Bessel function of the first

kind of orderp and−p as

Jp(x) =
1

2pΓ(1 + p)
y1 =

∞
∑

k=0

(−1)k

k!Γ(k + p+ 1)

(x

2

)2k+p
,

J−p(x) =
1

2−pΓ(1− p)
y2 =

∞
∑

k=0

(−1)k

k!Γ(k − p+ 1)

(x

2

)2k−p
.

As these are constant multiples of the solutions we found above, these are both solutions to

Bessel’s equation of orderp. Whenp is not an integer,Jp andJ−p are linearly independent.

When2p is an integer we obtain

Jp(x) =

∞
∑

k=0

(−1)k

k!(k + p)!

(x

2

)2k+p
.

In this case it turns out that

Jp(x) = (−1)nJ−p(x),

and so in that case we do not obtain a second linearly independent solution.

40.1.3 Problem 3

Find one series solution ofxy′′ + y′ + y = 0.

Solution: The indicial equation is

r(r − 1) + r = r2 = 0.

This equation has only one rootr = 0. The recursion equation is

(n+ r)2an = −an−1, n ≥ 1.

The solution witha0 = 1 is

an(r) = (−1)n
1

(r + 1)2(r + 2)2 · · · (r + n)2

Settingr = 0 gives the solution

y1 =

∞
∑

n=0

(−1)n
xn

(n!)2
.
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Module-IV: Vector Calculus 

Lesson 41 

Introduction  

41.1 Introduction to Vector Calculus 

We first introduce scalar and vector functions and some basic notation and terminology related to 
these. 

41.1.1 Scalar Function 

A scalar function 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is a function defined at each point in a certain domain 𝐷𝐷 in space. It 
takes real values. It depends on the specific point 𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) in space, but not on any particular  
coordinate system which may be used. For every point (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∈ 𝐷𝐷,   𝑓𝑓 takes a real value. We 
say the a scalar field 𝑓𝑓 is defined in 𝐷𝐷.  For example, The distance function in the three 
dimensional space taken as the Euclidean distance between the points 𝑃𝑃(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and 
𝑃𝑃0(𝑥𝑥0,𝑦𝑦0,𝑧𝑧0)  

                  𝑓𝑓(𝑃𝑃) = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2 + (𝑧𝑧 − 𝑧𝑧0)2 

defines a scalar field. 

41.1.2 Vector function  

A vector function is defined at each point 𝑃𝑃 ∈ 𝐷𝐷 in three dimensional space by 

 ( ) 1 2 3V V P v i v v kj= = + +  

and we say that a vector field is defined in 𝐷𝐷. In Cartesian system of coordinates, it can be 
written as  

               𝑉𝑉 = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖 + 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 + 𝑣𝑣3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑘𝑘. 

An example of a vector field is the velocity field 𝑉𝑉(𝑃𝑃) defined at any point 𝑃𝑃 on a rotating body. 

41.1.3 Level surface 

Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) be a single valued continuous scalar function defined at every point 𝑃𝑃 ∈ 𝐷𝐷. Then  
an equation of a surface is defined by 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑐𝑐, a constant. It is called a level surface of the 
function.  

41.1.4  Example :  We determine the level surface of the scalar field in space, defined by the 
following function   ( , , ) .f x y z x y z= + +  
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We find that 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑐𝑐 gives x y z c+ + =  which is equation of a plane. For different c they 
define parallel planes. Therefore, the level surfaces are parallel planes. 

41.1.5  Example:  Determine the level surface of the scalar field in space, defined by the 
function 2 2 2( , , ) 9 16f x y z x y z= + + . 

Note that ( , , )f x y z c=  gives 2 2 29 16x y z c+ + = which defines ellipsoids. So the level surfaces 
are ellipsoids. 
 
41.2 Parametric Representation of Vector Functions 
 
In this section we introduce the parametric representation of vector functions. 
 
41.2.1 Parametric representation of curves 
   
The parametric representation of a curve 𝐶𝐶 in the two dimensional Cartesian plane is given by 

( ) ( ), ,x x t y y t a t b= = ≤ ≤ . Using this the position vector of a point 𝑃𝑃 on the curve 𝐶𝐶 can be 

written as ( ) ( ) ( )r t x t i y t j= + . 

Therefore, the position vector of a point on a curve defines a vector function.  Similarly a three 
dimensional curve or a space curve or a space curve 𝐶𝐶 can be parameterized as 

                            𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑖𝑖 + 𝑦𝑦(𝑡𝑡)𝑗𝑗 + 𝑧𝑧(𝑡𝑡)𝑘𝑘, 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏                  

41.2.2 Parametric Form of a Straight Line 

The parametric form of a line passing through a point with position vector a and with the 
direction of vector b is given by 

     𝑟𝑟(𝑡𝑡) = 𝑎𝑎 + 𝑡𝑡𝑡𝑡 = (𝑎𝑎1 + 𝑡𝑡𝑏𝑏1)𝑖𝑖 + (𝑎𝑎2 + 𝑡𝑡𝑏𝑏2)𝑗𝑗 + (𝑎𝑎3 + 𝑡𝑡𝑡𝑡3)𝑘𝑘 

 
41.2.3 Parametric Form of a Circle     

The parametric form of the circle 𝑥𝑥2 + 𝑦𝑦2 = 𝑎𝑎2,  is defined by 

                                    𝑟𝑟(𝑡𝑡) = 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 + 𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗  

41.2.4 Parametric Form of an Ellipse     

The parametric form of the ellipse 
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2 2

2 2 1x y
a b

+ =  

is given by  

                                        𝑟𝑟(𝑡𝑡) = 𝑎𝑎 cos 𝑡𝑡 𝑖𝑖 + 𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑗𝑗 

         
41.2.5 Parametric Form of a Parabola:    

Let us consider the parabola  𝑦𝑦2 = 4𝑎𝑎𝑥𝑥.  Now take 𝑦𝑦 = 𝑡𝑡 as one parameter and then we can write 
the parametric form of the parabola as  

                                 𝑟𝑟(𝑡𝑡) = �𝑡𝑡
2

4𝑎𝑎
� 𝑖𝑖 + 𝑡𝑡𝑡𝑡  

41.2.6  Parametric Representation of Surfaces  

We can give parametric representation of surfaces can be done using two parameters. Let  
𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑐𝑐  or 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 be the equation of a surface. Let an explicit representation of the 
surface be written as  𝑧𝑧 = ℎ(𝑥𝑥,𝑦𝑦). Then, if we substitute 𝑢𝑢 = 𝑥𝑥,𝑦𝑦 = 𝑣𝑣, the parametric form of 
the surface can be reduced to   

                               𝑟𝑟(𝑢𝑢, 𝑣𝑣) = 𝑢𝑢𝑢𝑢 + 𝑣𝑣𝑣𝑣 + ℎ(𝑢𝑢, 𝑣𝑣)𝑘𝑘. 

41.2.7 Example   

The parametric representation of the cylinder    𝑥𝑥2 + 𝑦𝑦2 = 𝑎𝑎2 is 

                                   𝑟𝑟(𝑢𝑢, 𝑣𝑣) = 𝑎𝑎 cos𝑢𝑢 𝑖𝑖 + 𝑎𝑎 sin𝑢𝑢 𝑗𝑗 +  𝑣𝑣 𝑘𝑘. 

41.2.8 Example   

The parametric representation of the sphere    𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑎𝑎2 is given by 

    𝑟𝑟(𝑢𝑢, 𝑣𝑣) = 𝑎𝑎 cos𝑢𝑢 cos𝑣𝑣 𝑖𝑖 + 𝑎𝑎 sin𝑢𝑢 cos 𝑣𝑣 𝑗𝑗 + 𝑎𝑎 sin𝑣𝑣 𝑘𝑘, 0 ≤ 𝑢𝑢 ≤ 2𝜋𝜋, −𝜋𝜋/2 ≤ 𝑣𝑣 ≤ 𝜋𝜋/2  

41.2.9 Example   

The parametric representation of the ellipsoid 

   𝑥𝑥
2

𝑎𝑎2 + 𝑦𝑦2

𝑏𝑏2 + 𝑧𝑧2

𝑐𝑐2 = 1 

is given by 

   𝑟𝑟(𝑢𝑢, 𝑣𝑣) = 𝑎𝑎 cos  𝑢𝑢 cos𝑣𝑣 𝑖𝑖 + 𝑏𝑏 sin𝑢𝑢 cos 𝑣𝑣 𝑗𝑗 + 𝑐𝑐 sin𝑣𝑣 𝑘𝑘 
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 41.3 Limit, Continuity and Differentiability of Vector Function   

In this section the analytical concepts of the limit, continuity and differentiability of vector 
function are introduced.   

41.3.1 Limit of Vector Function 

The  vector function 𝑣𝑣(𝑡𝑡) is said to have the limit p  as 𝑡𝑡 → 𝑙𝑙 if 𝑣𝑣(𝑡𝑡) is defined in some 
neighbourhood of l , except possibly  at  𝑡𝑡 = 𝑙𝑙, and  

                                                 lim𝑡𝑡→𝑙𝑙 |𝑣𝑣(𝑡𝑡) − 𝑝𝑝| = 0  

We write     𝑝𝑝.  In the Cartesian system, this implies that limits of the component functions  
𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡) and 𝑣𝑣3(𝑡𝑡) exist as  𝑡𝑡 → 𝑙𝑙  and  

       lim𝑡𝑡→𝑙𝑙 𝑣𝑣1(𝑡𝑡) = 𝑝𝑝1, lim𝑡𝑡→𝑙𝑙 𝑣𝑣2(𝑡𝑡) = 𝑝𝑝2, lim𝑡𝑡→𝑙𝑙 𝑣𝑣3(𝑡𝑡) = 𝑝𝑝3 

where  𝑝𝑝 = 𝑝𝑝1 𝑖𝑖 + 𝑝𝑝 𝑗𝑗 + 𝑝𝑝3𝑘𝑘. 

41.3.2 Continuity    

A vector function  𝑣𝑣(𝑡𝑡) is defined to be continuous at 𝑡𝑡 = 𝑙𝑙, if  

(𝑖𝑖) 𝑣𝑣(𝑡𝑡) is defined in some neighbourhood of l ,  (ii)lim𝑡𝑡→𝑙𝑙 𝑣𝑣(𝑡𝑡)  exists, and  (iii)lim𝑡𝑡→𝑙𝑙 𝑣𝑣(𝑡𝑡) =
𝑣𝑣(𝑙𝑙). 

In Cartesian system, this implies that 𝑣𝑣(𝑡𝑡)is continuous at  𝑡𝑡 = 𝑙𝑙, if and only if  the component 
functions 𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡) and 𝑣𝑣3(𝑡𝑡) are continuous at 𝑡𝑡 = 𝑙𝑙.  

41.3.3 Differentiability 

A  vector function 𝑣𝑣(𝑡𝑡) is said to be differentiable at a point, if the limit  

                                       lim
∆𝑡𝑡→0

𝑣𝑣(𝑡𝑡+∆𝑡𝑡)−𝑣𝑣(𝑡𝑡)
∆𝑡𝑡

 

exists. If the limit exists, then we write it as 𝑣𝑣 ′(𝑡𝑡) or as 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.  

In Cartesian system, this implies that the component functions  𝑣𝑣1(𝑡𝑡), 𝑣𝑣2(𝑡𝑡) and 𝑣𝑣3(𝑡𝑡) are 
differentiable at a point 𝑡𝑡, and the limits  

                        lim
∆𝑡𝑡→0

𝑣𝑣𝑖𝑖(𝑡𝑡+∆𝑡𝑡)−𝑣𝑣𝑖𝑖(𝑡𝑡)
∆𝑡𝑡

, 𝑖𝑖 = 1,2,3 exist. 

Therefore,    𝑣𝑣 ′(𝑡𝑡) = 𝑣𝑣1
′(𝑡𝑡)𝑖𝑖 + 𝑣𝑣2

′(𝑡𝑡)𝑗𝑗 + 𝑣𝑣3
′(𝑡𝑡)𝑘𝑘 

Let  𝑣𝑣(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑖𝑖 + 𝑦𝑦(𝑡𝑡)𝑗𝑗 + 𝑧𝑧(𝑡𝑡)𝑘𝑘 be the parametric representation of a curve 𝐶𝐶.  
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Then                     𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟 ′(𝑡𝑡) = 𝑑𝑑𝑑𝑑 (𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑖𝑖 + 𝑑𝑑𝑑𝑑 (𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑗𝑗 + 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝑘𝑘. 

41.3.4 Example 

Let us consider the represent of the parabola 𝑦𝑦 = 1 − 2𝑥𝑥2,−1 ≤ 𝑥𝑥 ≤ 1 in parametric form. 
Using this we will find 𝑟𝑟 ′(0) and 𝑟𝑟 ′(𝜋𝜋

4
). 

Assume sinx t= . Then 𝑦𝑦 = 1 − 2𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 ,  The range of t is  −𝜋𝜋
2
≤ 𝑡𝑡 ≤ 𝜋𝜋

2
. So  

                                    𝑟𝑟(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖 + 𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 𝑗𝑗,−𝜋𝜋
2
≤ 𝑡𝑡 ≤ 𝜋𝜋

2
 

Therefore  𝑟𝑟 ′(𝑡𝑡) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 − 2𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 𝑗𝑗 ,  

Further, 𝑟𝑟 ′(0) = 𝑖𝑖, 𝑟𝑟 ′ �𝜋𝜋
4
� = � 𝑖𝑖

√2
� − 2𝑗𝑗. The tangent at 𝑡𝑡 = 0 is parallel to 𝑥𝑥-axis.  

It may be noted that 𝑡𝑡 = 0 gives 𝑥𝑥 = 0, 𝑦𝑦 = 1 which is the vertex of the parabola. 

41.3.5 Example  

We find the tangent vector to the curve with parametric representation given by  

𝑥𝑥 = 𝑡𝑡3,𝑦𝑦 = 𝑡𝑡+1
𝑡𝑡

, 𝑧𝑧 = 𝑡𝑡2 + 1,      at the point  𝑡𝑡 = 2.  

We will also find the parametric representation of the tangent vector. 

First note that the position vector of a point on the given curve is  

                   𝑟𝑟(𝑡𝑡) = 𝑡𝑡3𝑖𝑖 + �1 + 1
𝑡𝑡
� 𝑗𝑗 + (𝑡𝑡2 + 1)𝑘𝑘, 𝑡𝑡 ≠ 0. 

Therefore the tangent vector is  

                        𝑟𝑟 ′(𝑡𝑡) = 3𝑡𝑡2 𝑖𝑖 − 1
𝑡𝑡2 𝑗𝑗 + 2𝑡𝑡 𝑘𝑘  

and 𝑟𝑟 ′(2) = 12𝑖𝑖 − 1
4
𝑗𝑗 + 4𝑘𝑘 . 

The position vector of the point at which 𝑟𝑟 ′(2) is the tangent is 𝑟𝑟(2) = 8𝑖𝑖 + 3
2
𝑗𝑗 + 5𝑘𝑘.  

Therefore we require the position vector of a point on the line passing through the point whose 
position vector is 𝑟𝑟(2) and has the direction of 𝑟𝑟 ′(2). Hence, parametric form of the line is given 
by  

𝑥𝑥 = 8 + 12𝑡𝑡,𝑦𝑦 = 3
2
− 𝑡𝑡

4
, 𝑧𝑧 = 5 + 4𝑡𝑡 or 𝑟𝑟 ′(𝑡𝑡) = �8, 3

2
, 5� + 𝑡𝑡(12,− 1

4
, 4). 
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41.3.6  Higher Order Derivatives and Rules of Differentiation  

Assuming that the existence of derivatives, we have the following results 

𝑣𝑣 ′′(𝑡𝑡) = 𝑣𝑣1
′′(𝑡𝑡)𝑖𝑖 + 𝑣𝑣2

′′(𝑡𝑡)𝑗𝑗 + 𝑣𝑣3
′′(𝑡𝑡)𝑘𝑘 

                                            (𝑢𝑢 + 𝑣𝑣)′ = 𝑢𝑢′ + 𝑣𝑣 ′ 

                                      (𝑓𝑓(𝑡𝑡)𝑢𝑢(𝑡𝑡))′ = 𝑓𝑓 ′(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑓𝑓(𝑡𝑡)𝑢𝑢′(𝑡𝑡) 

where  𝑓𝑓(𝑡𝑡) is any real valued scalar function. 

(𝑢𝑢(𝑡𝑡). 𝑣𝑣(𝑡𝑡))′ = 𝑢𝑢(𝑡𝑡). 𝑣𝑣 ′(𝑡𝑡) + 𝑢𝑢′(𝑡𝑡).𝑣𝑣(𝑡𝑡) 

                                           (𝑢𝑢(𝑡𝑡) × 𝑣𝑣(𝑡𝑡))′ = 𝑢𝑢(𝑡𝑡) × 𝑣𝑣 ′(𝑡𝑡) + 𝑢𝑢′(𝑡𝑡) × 𝑣𝑣(𝑡𝑡) 

where  .   and  ×  represent the dot and cross products, respectively. It must be mentioned that the 
cross product of two vectors is not commutative.  

41.3.7  Example   

Find 𝑣𝑣 ′(𝑡𝑡) in each of the following cases. 

(𝑖𝑖) 𝑣𝑣(𝑡𝑡) = (cos 𝑡𝑡 + 𝑡𝑡2)(𝑡𝑡𝑡𝑡 + 𝑗𝑗 + 2𝑘𝑘)    (𝑖𝑖𝑖𝑖) 𝑣𝑣(𝑡𝑡) = (3𝑡𝑡𝑡𝑡 + 5𝑡𝑡2𝑗𝑗 + 6𝑘𝑘). (𝑡𝑡2𝑖𝑖 − 2𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡) 

Solution 

          (𝒊𝒊)   𝑣𝑣 ′(𝑡𝑡) = (cos 𝑡𝑡 + 𝑡𝑡2)′(𝑡𝑡𝑡𝑡 + 𝑗𝑗 + 2𝑘𝑘) + (cos 𝑡𝑡 + 𝑡𝑡2)(𝑡𝑡𝑡𝑡 + 𝑗𝑗 + 2𝑘𝑘)′ 

                             = (− sin 𝑡𝑡 + 2𝑡𝑡)(𝑡𝑡𝑡𝑡 + 𝑗𝑗 + 2𝑘𝑘) + (cos 𝑡𝑡 + 𝑡𝑡2)(𝑖𝑖) 

                             = (3𝑡𝑡2 + 𝑡𝑡 sin 𝑡𝑡 + cos  𝑡𝑡 )𝑖𝑖 + (2𝑡𝑡 − sin 𝑡𝑡)(𝑗𝑗 + 2𝑘𝑘) 

             

             (𝒊𝒊𝒊𝒊)   𝑣𝑣 ′(𝑡𝑡) = (3𝑡𝑡𝑡𝑡 + 5𝑡𝑡2𝑗𝑗 + 6𝑘𝑘)′. (𝑡𝑡2𝑖𝑖 − 2𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡) + (3𝑡𝑡𝑡𝑡 + 5𝑡𝑡2𝑗𝑗 + 6𝑘𝑘). (𝑡𝑡2𝑖𝑖 −
                                       2𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡)′ 

                                 = (3𝑖𝑖 + 10𝑡𝑡 𝑗𝑗)(𝑡𝑡2𝑖𝑖 + 2𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡) + (3𝑡𝑡𝑡𝑡 + 5𝑡𝑡2𝑗𝑗 + 6𝑘𝑘). (2𝑡𝑡𝑡𝑡 − 2𝑗𝑗 + 𝑘𝑘) 

                                 = 6 − 21𝑡𝑡2 

 41.3.8  Length of a Space Curve   

Let  the curve 𝐶𝐶 represented in parametric form as 𝑟𝑟 = 𝑟𝑟(𝑡𝑡),𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏. In Cartesian system, we 
have   𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑖𝑖 + 𝑦𝑦(𝑡𝑡)𝑗𝑗 + 𝑧𝑧(𝑡𝑡)𝑘𝑘. Then, the length of the curve is given by 
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𝑙𝑙 = � [�𝑥𝑥 ′(𝑡𝑡)�
2

+ �𝑦𝑦 ′(𝑡𝑡)�
2

+ �𝑧𝑧 ′(𝑡𝑡)�
2

]1/2
𝑏𝑏

𝑎𝑎
𝑑𝑑𝑑𝑑 = � [𝑟𝑟 ′(𝑡𝑡). 𝑟𝑟 ′(𝑡𝑡)]1/2

𝑏𝑏

𝑎𝑎
 

We observe that the integrand is the norm of 𝑟𝑟 ′(𝑡𝑡),  that is  

                  ||𝑟𝑟 ′(𝑡𝑡)|| = [�𝑥𝑥 ′(𝑡𝑡)�
2

+ �𝑦𝑦 ′(𝑡𝑡)�
2

+ �𝑧𝑧 ′(𝑡𝑡)�
2

]1/2 

Then, we can write  

                                   𝑙𝑙 = ∫ ||𝑟𝑟′(𝑡𝑡)||𝑏𝑏
𝑎𝑎 𝑑𝑑𝑑𝑑 

Sometimes the notation |𝑟𝑟 ′(𝑡𝑡)| is also used instead of ||𝑟𝑟 ′(𝑡𝑡)||. 

Now, define the real valued function 𝑠𝑠(𝑡𝑡) as  

          𝑠𝑠(𝑡𝑡) = ∫ [�𝑥𝑥 ′(𝜉𝜉)�
2

+ �𝑦𝑦 ′(𝜉𝜉)�
2

+ �𝑧𝑧 ′(𝜉𝜉)�
2

]1/2𝑡𝑡
𝑎𝑎 𝑑𝑑𝑑𝑑 = ∫ ||𝑟𝑟 ′(𝜉𝜉)||𝑡𝑡

𝑎𝑎 𝑑𝑑𝑑𝑑                        (41.3.1) 

Then, 𝑠𝑠(𝑡𝑡) is the arc length of the curve from its initial point (𝑥𝑥(𝑎𝑎),𝑦𝑦(𝑎𝑎), 𝑧𝑧(𝑎𝑎)) to an arbitrary 
point (𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) on the curve 𝐶𝐶. Therefore,  𝑠𝑠(𝑡𝑡) is the length function. Using  relation 
(41.3.1), it is possible to solve for 𝑡𝑡 as a function of 𝑠𝑠 , that is 𝑡𝑡 = 𝑠𝑠(𝑡𝑡). Then the curve 𝐶𝐶 can be 
parameterised in terms of the arc length 𝑠𝑠 as 

                      𝑟𝑟(𝑠𝑠) = 𝑟𝑟(𝑡𝑡(𝑠𝑠)) = 𝑥𝑥�𝑡𝑡(𝑠𝑠)�𝑖𝑖 + 𝑦𝑦�𝑡𝑡(𝑠𝑠)�𝑗𝑗 + 𝑧𝑧(𝑡𝑡(𝑠𝑠))𝑘𝑘 

41.3.9  Example 

We try to find  the length of the Helix which is given by  

                                                  𝑟𝑟(𝑡𝑡) = 𝑎𝑎 cos 𝑡𝑡 𝑖𝑖 + 𝑎𝑎 sin 𝑡𝑡 𝑗𝑗 + 𝑐𝑐𝑐𝑐 𝑘𝑘,𝑎𝑎 > 0,0 ≤ 𝑡𝑡 ≤ 2𝜋𝜋. 

First note that we can write 

 ( ) ( ) ( )cos , sin ,x t a t y t a t z t ct= = = .   

Hence  𝑥𝑥 ′(𝑡𝑡) = − asin 𝑡𝑡 ,𝑦𝑦 ′(𝑡𝑡) = acos 𝑡𝑡, 𝑧𝑧 = 𝑐𝑐.  

Therefore , we have 

𝑠𝑠 = arc length = ∫ [𝑎𝑎2𝑠𝑠𝑠𝑠𝑠𝑠2𝑡𝑡 + 𝑎𝑎2𝑐𝑐𝑐𝑐𝑐𝑐2𝑡𝑡 + 𝑐𝑐2]1/2𝑑𝑑𝑑𝑑 = (2𝜋𝜋)(𝑎𝑎2 + 𝑐𝑐2)1/22𝜋𝜋
0   
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Module-IV: Vector Calculus 

Lesson 42 

Gradient and Directional Derivative 

42.1 Gradient of a Scalar Field  

Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) be a real valued function defining a scalar field. To define the gradient of a scalar 
field, we first introduce a vector operator called del operator denoted by ∇. We define the vector 
differential operator in two and three dimensions as  

                    ∇= 𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕

    and       ∇= 𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕

 

The gradient of a scalar field 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧), denoted by ∇𝑓𝑓 or grad (𝑓𝑓) is defined as  

                         ∇f = 𝑖𝑖 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Note that the del operator  ∇  operates on a scalar field and produces a vector field. 

42.1. 1 Example 

Find the gradient of the following scalar fields 

(𝑖𝑖) 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑦𝑦2 − 4𝑥𝑥𝑥𝑥  at (1,2),      

 Solution 

                                   ∇f(x, y) = �𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕
� (𝑦𝑦2 − 4𝑥𝑥𝑥𝑥) = −4𝑦𝑦 𝑖𝑖 + (2𝑦𝑦 − 4𝑥𝑥)𝑗𝑗 

42.1. 2 Example 

    𝒓𝒓 = 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 + 𝑧𝑧𝑧𝑧, |𝒓𝒓| = 𝑟𝑟 and 𝑟̂𝑟 = 𝒓𝒓/𝑟𝑟, then show that grad�1
𝑟𝑟
� = −𝑟̂𝑟/𝑟𝑟2. 

Solution 

Grad�1
𝑟𝑟
� = �𝑖𝑖 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑗𝑗 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑘𝑘 𝜕𝜕

𝜕𝜕𝜕𝜕
� �1

𝑟𝑟
� = 𝑖𝑖 �− 1

𝑟𝑟2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑗𝑗 �− 1

𝑟𝑟2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� + 𝑘𝑘 �− 1

𝑟𝑟2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = − 1

𝑟𝑟2 �
𝑥𝑥
𝑟𝑟

 𝑖𝑖 + 𝑦𝑦
𝑟𝑟
𝑗𝑗 +

𝑧𝑧
𝑟𝑟
𝑘𝑘� 

                 = − 1
𝑟𝑟2 �

𝒓𝒓
𝑟𝑟
� = − 𝑟𝑟̂

𝑟𝑟2 

 

where  𝑟̂𝑟 = (𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 + 𝑧𝑧𝑧𝑧)/𝑟𝑟 
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42.1. 3 Geometrical Representation of the Gradient 

 Let  𝑓𝑓(𝑃𝑃) = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) be a differentiable scalar field. Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑘𝑘 be a level surface and 
𝑃𝑃0(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) be a point on it. There are infinite number of smooth  curves on the surface passing 
through the point 𝑃𝑃0. Each of these curves has a tangent at 𝑃𝑃0. The totality of these tangent lines 
form a tangent plane to the surface at a point 𝑃𝑃0. A vector normal to this plane at 𝑃𝑃0  is called the 
normal vector to the surface at this point.  

Consider now a smooth curve 𝐶𝐶 on the surface passing through a point 𝑃𝑃 on the surface. Let 
𝑥𝑥 = 𝑥𝑥(𝑡𝑡),𝑦𝑦 = 𝑦𝑦(𝑡𝑡), 𝑧𝑧 = 𝑧𝑧(𝑡𝑡) be the parametric representation of the curve 𝐶𝐶. Any point 𝑃𝑃 on 𝐶𝐶 
has the position vector 𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑖𝑖 + 𝑦𝑦(𝑡𝑡)𝑗𝑗 + 𝑧𝑧(𝑡𝑡)𝑘𝑘. Since the curve lies on the surface, we 
have  

                                              𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) = 𝑘𝑘  

Then, 𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) = 0  

By chain rule, we have     𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0    

or  �𝑖𝑖 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� . �𝑖𝑖 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑗𝑗 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑘𝑘 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� = 0  

or ∇𝑓𝑓. 𝑟𝑟 ′(𝑡𝑡) = 0 

 Let  ∇𝑓𝑓(𝑃𝑃) ≠ 0 and  𝑟𝑟 ′(𝑡𝑡) ≠ 0. Now 𝑟𝑟 ′(𝑡𝑡) is a tangent to 𝐶𝐶 at the point 𝑃𝑃 and lies in the tangent 
plane to the surface at  . Hence   ∇𝑓𝑓(𝑃𝑃)  is orthogonal to every tangent vector at 𝑃𝑃. Therefore, 
 ∇𝑓𝑓(𝑃𝑃)   is the vector normal to the surface  𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑘𝑘   at the point 𝑃𝑃. 

42.1. 4 Example 

We will find a unit normal vector to the surface 𝑥𝑥𝑦𝑦2 + 2𝑦𝑦𝑦𝑦 = 8 at the point (3,−2,1). 

         Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥𝑦𝑦2 + 2𝑦𝑦𝑦𝑦 = 8 then 

                                      𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑦𝑦2,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 2𝑥𝑥𝑥𝑥 + 2𝑧𝑧  and  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 2𝑦𝑦 

Therefore 

   ∇f = 𝑖𝑖 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑦𝑦2𝑖𝑖 + (2𝑥𝑥𝑥𝑥 + 2𝑧𝑧)𝑗𝑗 + 2𝑦𝑦𝑦𝑦 

At (3,−2,1), we obtain the normal vector as ∇f(3,−2,1) = 4i − 10j − 4k. The unit normal 
vector at (3,−2,1) is given by 

   4𝑖𝑖−10𝑗𝑗−4𝑘𝑘
√16+100+16

= 2𝑖𝑖−5𝑗𝑗−2𝑘𝑘
√33

. 
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42.1. 5 Example 

Here we will find the angle between the two surfaces 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑧𝑧 = 𝑦𝑦2 − 1 and 𝑥𝑥2𝑦𝑦 = 2 − 𝑧𝑧 at the 
given point (1,1,1). 

First note that the angle between two surfaces at a common point is the angle between their 
normals at that point. Now we have  

𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 𝑧𝑧 − 𝑦𝑦2 + 1 = 0,∆𝑓𝑓1(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (log 𝑧𝑧)𝑖𝑖 − 2𝑦𝑦𝑦𝑦 + (𝑥𝑥/𝑧𝑧)𝑘𝑘 

               ∆𝑓𝑓1(1,1,1) = −2𝑗𝑗 + 𝑘𝑘 = 𝑛𝑛1 

               𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥2𝑦𝑦 − 2 + 𝑧𝑧 = 0, ∆𝑓𝑓2(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 2𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑥𝑥2𝑗𝑗 + 𝑘𝑘 

               ∆𝑓𝑓2(1,1,1) = 2𝑖𝑖 + 𝑗𝑗 + 𝑘𝑘 = 𝑛𝑛2 

Therefore   cos 𝜃𝜃 = � 𝑛𝑛1.𝑛𝑛2
|𝑛𝑛1||𝑛𝑛2|� = 1

√30
  or 𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 � 1

√30
�. 

42.1.6 Properties of Gradient  

Let 𝑓𝑓 and 𝑔𝑔 be any two differentiable scalar fields. The gradient satidfies the following algebraic 
properties,  

                     ∆(𝑓𝑓 + 𝑔𝑔) = ∆𝑓𝑓 + ∆𝑔𝑔 

                     ∆(𝑐𝑐1𝑓𝑓 + 𝑐𝑐2𝑔𝑔) = 𝑐𝑐1∆𝑓𝑓 + 𝑐𝑐2∆𝑔𝑔,  where 𝑐𝑐1, 𝑐𝑐2 are arbitrary constants 

                       ∆(𝑓𝑓𝑓𝑓) = 𝑓𝑓∆𝑔𝑔 + 𝑔𝑔∆𝑓𝑓 

                       ∆ �𝑓𝑓
𝑔𝑔
� = 𝑔𝑔∆𝑓𝑓−𝑓𝑓∆𝑔𝑔

𝑔𝑔2   

42.2 Directional Derivative  

Let 𝑓𝑓(𝑃𝑃) = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) be a differentiable scalar field.  

Then 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 denotes the rates of change of 𝑓𝑓 in the direction of 𝑥𝑥,𝑦𝑦 and 𝑧𝑧 axis, respectively.  

If  𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑘𝑘  is the level surface and 𝑃𝑃0 is any point, then  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 at 𝑃𝑃0(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) denote 

the slopes of the tangent lines in the directions of 𝑖𝑖, 𝑗𝑗,𝑘𝑘 respectively. It is natural to give the 
definition of derivative in any direction which we call as the directional derivative.  

Let 𝑏𝑏� = 𝑏𝑏1𝑖𝑖 + 𝑏𝑏2𝑗𝑗 + 𝑏𝑏3𝑘𝑘 be any unit vector. Let 𝑃𝑃0 be any point 𝑃𝑃0: 𝑎𝑎 = 𝑎𝑎1𝑖𝑖 + 𝑎𝑎2𝑗𝑗 + 𝑎𝑎3𝑘𝑘. 

Then, the position vector of any point 𝑄𝑄 on the line passing through 𝑃𝑃0 and in the direction of  𝑏𝑏� 
is given by  
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           𝑟𝑟 = 𝑎𝑎 + 𝑡𝑡𝑏𝑏� = (𝑎𝑎1 + 𝑡𝑡𝑏𝑏1)𝑖𝑖 + (𝑎𝑎2 + 𝑡𝑡𝑏𝑏2)𝑗𝑗 + (𝑎𝑎3 + 𝑡𝑡𝑡𝑡3)𝑘𝑘 = 𝑥𝑥(𝑡𝑡)𝑖𝑖 + 𝑦𝑦(𝑡𝑡)𝑗𝑗 + 𝑧𝑧(𝑡𝑡)𝑘𝑘 

This is, the point 𝑄𝑄(𝑎𝑎1 + 𝑡𝑡𝑏𝑏1,𝑎𝑎2 + 𝑡𝑡𝑏𝑏2,𝑎𝑎3 + 𝑡𝑡𝑡𝑡3) is on this line. Now, the vector formthe point 
𝑃𝑃0 to 𝑄𝑄 is given by  𝑡𝑡𝑏𝑏�. Since | 𝑏𝑏�|=1, the distance from 𝑃𝑃0 to 𝑄𝑄 is 𝑡𝑡. Then 

                                        𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= lim𝑡𝑡→0
𝑓𝑓(𝑄𝑄)−𝑓𝑓(𝑃𝑃)

𝑡𝑡
 

if it exists, is called the directional derivative of 𝑓𝑓 at the point 𝑃𝑃0 in the direction to 𝑏𝑏� . 

Therefore 𝜕𝜕
𝜕𝜕𝜕𝜕

 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) is rate of change of 𝑓𝑓 with respect to  the distance 𝑡𝑡. 

We have  

                   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

where 

  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 are evaluated at 𝑡𝑡 = 0 .  

We write  

                                𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  �𝑖𝑖 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� . �𝑖𝑖 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑗𝑗 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝑘𝑘 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
� = ∇𝑓𝑓. 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
      

But  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑏𝑏�(a unit vector). Therefore, the directional derivative of 𝑓𝑓 in the direction of 𝑏𝑏� in given 
by  

                          Directional derivative =∇𝑓𝑓. 𝑏𝑏� = grad(𝑓𝑓). 𝑏𝑏�, 

which is denoted by 𝐷𝐷𝑏𝑏(𝑓𝑓).  Note that 𝑏𝑏� is a unit vector. If the direction is specified by a vector 
𝑢𝑢, then 𝑏𝑏� = 𝑢𝑢/|𝑢𝑢|. 

42.2.1 Example  

We will determine the directional derivative of 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥𝑦𝑦2 + 4𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑧𝑧2  at the point 
(1,2,3) in the direction of 3𝑖𝑖 + 4𝑗𝑗 − 5𝑘𝑘. 

Consider  

∇𝑓𝑓 = (𝑦𝑦2 + 4𝑦𝑦𝑦𝑦)𝑖𝑖 + (2𝑥𝑥𝑥𝑥 + 4𝑥𝑥𝑥𝑥)𝑗𝑗 + (4𝑥𝑥𝑥𝑥 + 2𝑧𝑧)𝑘𝑘. 

At the point (1,2,3), we have ∇𝑓𝑓 = 28𝑖𝑖 + 16𝑗𝑗 + 14𝑘𝑘. The unit vector in the given direction is 
 𝑏𝑏� = (3𝑖𝑖 + 4𝑗𝑗 − 5𝑘𝑘)/5√2. 

Therefore 
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  𝐷𝐷𝑏𝑏(1,2,3) = 1
5√2

(28𝑖𝑖 + 16𝑗𝑗 + 14𝑘𝑘). (3𝑖𝑖 + 4𝑗𝑗 − 5𝑘𝑘) = 78
5√2 
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Module-IV: Vector Calculus 

 
 

Lesson 43 

Divergence and Curl 

43.1 Divergence of a Vector Field  

Let 𝑣𝑣 = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖 + 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 + 𝑣𝑣3(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑘𝑘 define a vector field.  

We define the divergence of vector field as below: 

    Divergence of 𝑣𝑣, denoted bi div 𝑣𝑣 , is defined as the scalar  

                                div 𝑣𝑣 = 𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣3
𝜕𝜕𝜕𝜕

 

     Also div 𝑣𝑣 = ∇. 𝑣𝑣 = �𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕
� . (𝑣𝑣1𝑖𝑖 + 𝑣𝑣2𝑗𝑗 + 𝑣𝑣3𝑘𝑘) = 𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
 

43.1.1 Example  

Here we will find the divergence of the vector field 𝑣𝑣 = (𝑥𝑥2𝑦𝑦2 − 𝑧𝑧3)𝑖𝑖 + 2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥 𝑘𝑘. 

Note that we have  

                                 div 𝑣𝑣 = 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑥𝑥2𝑦𝑦2 − 𝑧𝑧3) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(2𝑥𝑥𝑥𝑥𝑥𝑥) + 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥 ) 

                                            = 2𝑥𝑥𝑦𝑦2 + 2𝑥𝑥𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥  

43.2  Curl of a Vector Field 𝒗𝒗 

Curl of a vector field 𝑣𝑣, denoted by curl 𝑣𝑣, is defined as the vector field 

Curl 𝑣𝑣 = �𝜕𝜕𝑣𝑣3
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣2
𝜕𝜕𝜕𝜕
� 𝑖𝑖 + �𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
� 𝑗𝑗 + �𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
� 𝑘𝑘 

Curl 𝑣𝑣 can also be written in terms of the gradient operator as  

         Curl 𝑣𝑣 = ∇ × 𝑣𝑣 = �
𝑖𝑖 𝑗𝑗 𝑘𝑘
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

�. 

 

43.2.1 Example 

  Find the curl of the vector field 𝑣𝑣 = (𝑥𝑥2𝑦𝑦2 − 𝑧𝑧3)𝑖𝑖 + 2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥 𝑘𝑘 

Solution 
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                     Curl 𝑣𝑣 = �

𝑖𝑖 𝑗𝑗 𝑘𝑘
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝑥𝑥2𝑦𝑦2 − 𝑧𝑧3 2𝑥𝑥𝑥𝑥𝑥𝑥 𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥
� 

= 𝑖𝑖(𝑥𝑥𝑥𝑥𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥 − 2𝑥𝑥𝑥𝑥) − 𝑗𝑗(𝑦𝑦𝑦𝑦𝑒𝑒𝑥𝑥𝑥𝑥𝑥𝑥 − 3𝑧𝑧2) + 𝑘𝑘(2𝑦𝑦𝑦𝑦 − 2𝑥𝑥2𝑦𝑦) 

43.2.2 Curl of Gradient  

      Let 𝑓𝑓 be a differentiable vector field. Then  

                                        Curl(grad𝑓𝑓)=0 or ∇ × ∇𝑓𝑓 = 0 

Proof :   From the definition, we have   

                           ∇ × ∇𝑓𝑓 = ��

𝑖𝑖 𝑗𝑗 𝑘𝑘
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�� 

                                        = 𝑖𝑖 �
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

−
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� + 𝑗𝑗 �
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

−
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� + 𝑘𝑘 �
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

−
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

� = 0 

43.2.3 Divergence of Curl  

        Let  𝑣𝑣 be a differentiable vector field. Then  

                                   div(curl 𝑣𝑣)=0 or ∇. (∇ × 𝑣𝑣) = 0   

proof.  Form the definition, we have for 𝑣𝑣 = 𝑣𝑣1𝑖𝑖 + 𝑣𝑣2𝑗𝑗 + 𝑣𝑣3𝑘𝑘   

              ∇. (∇ × 𝑓𝑓) = �𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕
� . ��𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
� 𝑖𝑖 + �𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
� 𝑗𝑗 + �𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
� 𝑘𝑘� 

𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
� +

𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
� +

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
� = 0 

43.2.4 Example  

 Prove that div(𝑓𝑓𝑓𝑓)= 𝑓𝑓 (div 𝑣𝑣)+grad(𝑓𝑓). 𝑣𝑣, where 𝑓𝑓 is scalar function 

 Solution  

   ∇. (𝑓𝑓𝑓𝑓) = �𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕
� . (𝑓𝑓𝑓𝑓1𝑖𝑖 + 𝑓𝑓𝑣𝑣2𝑗𝑗 + 𝑓𝑓𝑣𝑣3𝑘𝑘) = 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑓𝑓𝑓𝑓1) + 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑓𝑓𝑣𝑣2) + 𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑓𝑓𝑣𝑣3) 
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                       = 𝑓𝑓 �𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣3
𝜕𝜕𝜕𝜕
� + (𝑣𝑣1𝑖𝑖 + 𝑣𝑣2𝑗𝑗 + 𝑣𝑣3𝑘𝑘). �𝑖𝑖 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑗𝑗 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑘𝑘 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 

                      = 𝑓𝑓(∇.𝑣𝑣) + 𝑣𝑣. (∇𝑓𝑓) = 𝑓𝑓(∇. 𝑣𝑣) + ∇𝑓𝑓. 𝑣𝑣  

43.2.5 Example 

  If    𝒓𝒓 = 𝑥𝑥𝑥𝑥 + 𝑦𝑦𝑦𝑦 + 𝑧𝑧𝑧𝑧, |𝒓𝒓| = 𝑟𝑟, show that div (𝒓𝒓/𝑟𝑟3)=0 

Solution 

     ∆. � 𝒓𝒓
𝑟𝑟3� = �𝑖𝑖 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑗𝑗 𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑘𝑘 𝜕𝜕

𝜕𝜕𝜕𝜕
� . �𝑖𝑖 𝑥𝑥

𝑟𝑟3 + 𝑗𝑗 𝑦𝑦
𝑟𝑟3 + 𝑘𝑘 𝑧𝑧

𝑟𝑟3� = ∑
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑥𝑥
𝑟𝑟3� 

=
3
𝑟𝑟3 −

3
𝑟𝑟4 �𝒙𝒙

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒚𝒚
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝒛𝒛
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 

Since 𝑟𝑟2 = 𝑥𝑥2+𝑦𝑦2 + 𝑧𝑧2 

Therefore,     ∆. � 𝒓𝒓
𝑟𝑟3� = 3

𝑟𝑟3 −
3
𝑟𝑟3 = 𝟎𝟎 

43.2.6 Example 

Prove the following identities 

(i) curl (𝑓𝑓𝑓𝑓) =(grad𝑓𝑓)× 𝑣𝑣 + 𝑓𝑓curl 𝑣𝑣 

(ii) div(grad 𝑓𝑓)=∇2𝑓𝑓 where ∇2= 𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2

𝜕𝜕𝑧𝑧2 is the Laplacian operator 

(iii) curl(curl𝑣𝑣)= ∇(∇.𝑣𝑣) − ∇2𝑣𝑣 or grad(div 𝑣𝑣) = ∇ × (∇ × 𝑣𝑣) + ∇2𝑣𝑣. 

      where 𝑓𝑓 is a scalar function. 

Solution 

(i) curl (𝑓𝑓𝑓𝑓) = ∇ × (𝑓𝑓𝑓𝑓) = ∇ × (𝑓𝑓𝑓𝑓1𝑖𝑖 + 𝑓𝑓𝑣𝑣2𝑗𝑗 + 𝑓𝑓𝑣𝑣3𝑘𝑘) = ∑[ 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑓𝑓𝑣𝑣3) − 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑓𝑓𝑣𝑣2)] 

                       = 𝑓𝑓 ��𝜕𝜕𝑣𝑣3
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝑣𝑣2
𝜕𝜕𝜕𝜕
� 𝑖𝑖 + �𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
� 𝑗𝑗 + �𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
� 𝑘𝑘� + [�𝑣𝑣3

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑣𝑣2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑖𝑖 +

                             �𝑣𝑣1
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑣𝑣3

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑗𝑗 + �𝑣𝑣2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑣𝑣1

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑘𝑘]   

                        = 𝑓𝑓(curl 𝑣𝑣) + �𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕
�× (𝑣𝑣1𝑖𝑖 + 𝑣𝑣2𝑗𝑗 + 𝑣𝑣3𝑘𝑘) 

                           = 𝑓𝑓(curl 𝑣𝑣) + (grad 𝑓𝑓)× 𝑣𝑣 
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(ii)   div(grad 𝑓𝑓)= �𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑗𝑗 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑘𝑘 𝜕𝜕
𝜕𝜕𝜕𝜕
� . �𝑖𝑖 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑗𝑗 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑘𝑘 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = �𝜕𝜕

2𝑓𝑓
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2𝑓𝑓

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2𝑓𝑓
𝜕𝜕𝑧𝑧2� = ∇2𝑓𝑓  

 

(iii) grad(div 𝑣𝑣)= ∇ × (∇ × 𝑣𝑣) = �∑ 𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕
� × �∑ 𝑖𝑖 �𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
− 𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
�� 

= �𝑖𝑖 �
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝑣𝑣2

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
� −

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜕𝜕𝑣𝑣1

𝜕𝜕𝜕𝜕
−
𝜕𝜕𝑣𝑣3

𝜕𝜕𝜕𝜕
��  

 

                                           = ∑ 𝑖𝑖 � 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣2
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝑣𝑣3
𝜕𝜕𝜕𝜕
� − �𝜕𝜕

2𝑣𝑣1
𝜕𝜕𝑥𝑥2 + 𝜕𝜕2𝑣𝑣1

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2𝑣𝑣1
𝜕𝜕𝑧𝑧2 ��                                       

                                             = �∑ 𝑖𝑖 𝜕𝜕
𝜕𝜕𝜕𝜕
� (∇.𝑣𝑣) − � 𝜕𝜕2

𝜕𝜕𝑥𝑥2 + 𝜕𝜕2

𝜕𝜕𝑦𝑦2 + 𝜕𝜕2

𝜕𝜕𝑧𝑧2� (∑ 𝑖𝑖𝑣𝑣1) 

                                               = ∇(∇.𝑣𝑣) − ∇2𝑣𝑣 
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Module-IV: Vector Calculus 

Lesson 44 

Line Integral 

44.1 Introduction 

Let 𝐶𝐶 be a simple curve. Let the parametric representation of 𝐶𝐶 be written as  

                             𝑥𝑥 = 𝑥𝑥(𝑡𝑡),𝑦𝑦 = 𝑦𝑦(𝑡𝑡), 𝑧𝑧 = 𝑧𝑧(𝑡𝑡), 𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏                                     (44.1.1) 

Therefore, the position vector of appoint on the curve 𝐶𝐶 can be written as  

                                  𝑟𝑟(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)𝑖𝑖 + 𝑦𝑦(𝑡𝑡)𝑗𝑗 + 𝑧𝑧(𝑡𝑡)𝑘𝑘,𝑎𝑎 ≤ 𝑡𝑡 ≤ 𝑏𝑏                                (44.1.2) 

44.2 Line Integral with Respect to Arc Length 

Let 𝐶𝐶 be a simple smooth curve whose parametric representation is given as Eqs.(1) and (2). 
Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) be continuous on 𝐶𝐶. Then, we define the line integral 𝑓𝑓 of over 𝐶𝐶 with respect 
to the arc length 𝑠𝑠 by 

     ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡))�𝑥𝑥 ′(𝑡𝑡)2 + 𝑦𝑦 ′(𝑡𝑡)2 + 𝑧𝑧 ′(𝑡𝑡)2𝑏𝑏
𝑎𝑎  𝑑𝑑𝑑𝑑 

since 

   𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑 = ��𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

2
+ �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
+ �𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�

2
 𝑑𝑑𝑑𝑑  

 

44.2.1 Example  

Evaluate  ∫ (𝑥𝑥2 + 𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝐶𝐶 , where 𝐶𝐶 is the curve defined by 𝑥𝑥 = 4𝑦𝑦, 𝑧𝑧 = 3 form (2, 1
2

, 3) to 
(4,1,3). 

Solution 

Let 𝑥𝑥 = 𝑡𝑡. Then, 𝑦𝑦 = 𝑡𝑡/4  and 𝑧𝑧 = 3. Therefore, the curve 𝐶𝐶  represented by 

 𝑥𝑥 = 𝑡𝑡, 𝑦𝑦 = 𝑡𝑡
4

, 𝑧𝑧 = 3, 2 ≤ 𝑡𝑡 ≤ 3.  

We have 𝑑𝑑𝑑𝑑 = √17/4. 

Hence  ∫ (𝑥𝑥2 + 𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝐶𝐶 = √17
4 ∫ �𝑡𝑡2 + 3

4
𝑡𝑡� 𝑑𝑑𝑑𝑑 = 139√17

24
.4

2  

44.2.2 Line Integral of Vector Fields  

Let 𝐶𝐶 be a smooth curve whose parametric representation is given in Eqs. (44.1.1) and 
(44.1.2). Let  
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                    𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖 + 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 + 𝑣𝑣3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑘𝑘 

   be a vector field that is continuous on 𝐶𝐶. Then, the line integral of 𝑣𝑣 over 𝐶𝐶 is defined by 

                   ∫ 𝑣𝑣.𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣1𝑑𝑑𝑑𝑑 + 𝑣𝑣2𝑑𝑑𝑑𝑑 + 𝑣𝑣3𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶      

                                     = ∫ 𝑣𝑣�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)�𝐶𝐶 . 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑                                             (44.2.1) 

If   𝑣𝑣 = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖, then Eq.( 44.2.1) reduces to  

                  ∫ 𝑣𝑣.𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣1𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣1(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶  

Similarly, if  𝑣𝑣 = 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 or  𝑣𝑣 = 𝑣𝑣3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑘𝑘, we respectively obtained  

                   ∫ 𝑣𝑣.𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣2𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣2(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶  

and            ∫ 𝑣𝑣.𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣3𝐶𝐶 𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣3(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑𝐶𝐶𝐶𝐶 . 

44.2.2 Example  

Evaluate the line integral of 𝑣𝑣 = 𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦2𝑗𝑗 + 𝑒𝑒𝑧𝑧𝑘𝑘 over the curve 𝐶𝐶 whose parametric 
representation is given by 𝑥𝑥 = 𝑡𝑡2,𝑦𝑦 = 2𝑡𝑡, 0 ≤ 𝑡𝑡 ≤ 1. 

Solution: 

The position vector of any point on 𝐶𝐶 is given by 𝑟𝑟 = 𝑡𝑡2𝑖𝑖 + 2𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡. We have  

                  ∫ 𝑣𝑣. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑 = ∫ (2𝑡𝑡3𝑖𝑖 + 4𝑡𝑡2𝑗𝑗 + 𝑒𝑒𝑡𝑡𝑘𝑘). (2𝑡𝑡𝑡𝑡 + 2𝑗𝑗 + 𝑘𝑘)𝑑𝑑𝑑𝑑1
0𝐶𝐶    

                                        = ∫ (4𝑡𝑡4 + 8𝑡𝑡2 + 𝑒𝑒𝑡𝑡)𝑑𝑑𝑑𝑑 = 37
15

+ 𝑒𝑒1
0  

44.2.3 Example 

Evaluate  the integral ∫ (𝑥𝑥2 + 𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝑐𝑐 , where 𝐶𝐶 is given by 𝑥𝑥 = 𝑡𝑡,𝑦𝑦 = 𝑡𝑡2, 𝑧𝑧 = 3𝑡𝑡, 1 ≤ 𝑡𝑡 ≤ 2. 

Solution:  

      We have ∫ (𝑥𝑥2 + 𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝑐𝑐 = 2∫ (𝑡𝑡2 + 3𝑡𝑡3)2
1 𝑑𝑑𝑑𝑑 = 163

4
  

44.3 Line Integral of Scalar Fields 

Let 𝐶𝐶 be a smooth curve whose parametric representation is as given in Eqs. (44.1.1) and 
(44.1.2). Let 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and  ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)be scalar fields which are continuous at 
point over 𝐶𝐶. Then, we define a line integral as  

  ∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 + ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 𝐶𝐶   
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         = ∫ �𝑓𝑓�𝑥𝑥(𝑡𝑡), 𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑔𝑔�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ ℎ�𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡), 𝑧𝑧(𝑡𝑡)� 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝑑𝑑𝐶𝐶   

 

 If 𝐶𝐶 is closed curve, then we usually write  

                           ∫ 𝑣𝑣.𝑑𝑑𝑑𝑑𝐶𝐶 = ∮ 𝑣𝑣.𝑑𝑑𝑑𝑑𝐶𝐶  

44.3.1 Example  

Evaluate ∫ (𝑥𝑥 + 𝑦𝑦)𝑑𝑑𝑑𝑑 − 𝑥𝑥2𝑑𝑑𝑑𝑑 + (𝑦𝑦 + 𝑧𝑧)𝑑𝑑𝑑𝑑𝐶𝐶  , where 𝐶𝐶 is 𝑥𝑥2 = 4𝑦𝑦, 𝑧𝑧 = 𝑥𝑥, 0 ≤ 𝑡𝑡 ≤ 2. 

 Solution 

First we consider parametric form of 𝐶𝐶 as 𝑥𝑥 = 𝑡𝑡,𝑦𝑦 = 𝑡𝑡2

4
, 𝑧𝑧 = 2, 0 ≤ 𝑡𝑡 ≤ 2.   

Therefore, 

          ∫ (𝑥𝑥 + 𝑦𝑦)𝑑𝑑𝑑𝑑 − 𝑥𝑥2𝑑𝑑𝑑𝑑 + (𝑦𝑦 + 𝑧𝑧)𝑑𝑑𝑑𝑑𝐶𝐶 = ∫ ��𝑡𝑡 +  𝑡𝑡
2

4
� − 𝑡𝑡2 �𝑡𝑡

2
� + �𝑡𝑡

2

4
+ 𝑡𝑡�� 𝑑𝑑𝑑𝑑2

0 = 10
3

            

44.4 Application of Line Integrals 

In this section, we consider some physical applications of the concept of line integral. 

44.4.1 Work Done By A Force    

Let  𝑣𝑣(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑣𝑣1(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑖𝑖 + 𝑣𝑣2(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑗𝑗 + 𝑣𝑣3(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑘𝑘  be a vector function defined and 
continuous at every point on 𝐶𝐶. Then the line integral of tangential component of 𝑣𝑣 along the 
curve 𝐶𝐶  from a point 𝑃𝑃 to the point 𝑄𝑄 is given by  

                     ∫ 𝑣𝑣.𝑑𝑑𝑑𝑑𝑄𝑄
𝑃𝑃 = ∫ 𝑣𝑣.𝑑𝑑𝑑𝑑 = ∫ 𝑣𝑣1𝑑𝑑𝑑𝑑 + 𝑣𝑣2𝑑𝑑𝑑𝑑 + 𝑣𝑣3𝑑𝑑𝑑𝑑𝑐𝑐𝐶𝐶    

Let now 𝑣𝑣 = 𝐹𝐹, a variable force acting on a particle which moves along a curve 𝐶𝐶. Then, the 
work 𝑊𝑊 done by the force 𝐹𝐹 in displacing the particle from the point 𝑃𝑃 to the point 𝑃𝑃 along 
the curve 𝐶𝐶 is given by  

                               𝑊𝑊 = ∫ 𝐹𝐹.𝑑𝑑𝑑𝑑 = ∫ 𝐹𝐹.𝑑𝑑𝑑𝑑𝐶𝐶∗
𝑄𝑄
𝑃𝑃  

where 𝐶𝐶∗ is the part of𝐶𝐶 , whose initial and terminal point are 𝑃𝑃 and 𝑄𝑄. 

Suppose that 𝐹𝐹is a conservative vector field . Then 𝐹𝐹 can be written as 𝐹𝐹 = grad(𝑓𝑓), where 𝑓𝑓 
is a scalar potential(field). Then, the work done 

       𝑊𝑊 = ∫ 𝐹𝐹.𝑑𝑑𝑑𝑑 = ∫ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑓𝑓).𝑑𝑑𝑑𝑑𝐶𝐶∗𝐶𝐶∗   
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            = ∫ ( 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑)𝐶𝐶∗ = ∫ 𝑑𝑑𝑑𝑑𝑄𝑄

𝑃𝑃 = [𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)]𝑃𝑃
𝑄𝑄       

44.4.1 Example 

Find the work done by the force 𝐹𝐹 = −𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦2𝑗𝑗 + 𝑧𝑧𝑧𝑧 in moving a particle over the circular 
path𝑥𝑥2 + 𝑦𝑦2 = 4, 𝑧𝑧 = 0 form (2,0,0) to (0,2,0). 

Solution          

The parametric representation  of the given curve is 𝑥𝑥 = 2 cot 𝑡𝑡,𝑦𝑦 = 2 sin 𝑡𝑡, 𝑧𝑧 = 0, 0 ≤ 𝑡𝑡 ≤
𝜋𝜋2 . Therefore, work done 𝑊𝑊 is given by  

𝑊𝑊 = ∫ 𝐹𝐹.𝑑𝑑𝑑𝑑𝐶𝐶 = ∫ −𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 + 𝑦𝑦2𝑑𝑑𝑑𝑑 + 𝑧𝑧𝑧𝑧𝑧𝑧𝐶𝐶    

� [−4 sin 𝑡𝑡 cos 𝑡𝑡 (−2 sin 𝑡𝑡 ) + 4 𝑠𝑠𝑠𝑠𝑠𝑠2 𝑡𝑡(2𝑐𝑐𝑐𝑐𝑐𝑐) ] 𝑑𝑑𝑑𝑑  
𝜋𝜋/2

0
=

16
13

 

44.4.2 Circulation 

A line integral  of a vector field 𝑣𝑣 around a simple closed curve  𝐶𝐶 is defined as the 
circulation of 𝑣𝑣 around 𝐶𝐶.  

Circulation = ∮ 𝑣𝑣.𝑑𝑑𝑑𝑑𝐶𝐶 = ∮ 𝑣𝑣. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑 = ∮ 𝑣𝑣.𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝐶𝐶 , 

where 𝑇𝑇 is the tangent vector to 𝐶𝐶. For example, in fluid mechanics, let 𝑣𝑣  represents the 
velocity field of a fluid and 𝐶𝐶 be a closed curve in its domain. Then, circulation gives the 
amount by which the fluid tends to turn the curve rotating or circulating around 𝐶𝐶. If 

∮ 𝑣𝑣.𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐 > 0 then the fluid tends to rotate 𝐶𝐶in the anti-clockwise direction, while if 

∮ 𝑣𝑣.𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐 < 0 , then the fluid tends to rotate 𝐶𝐶 in the clockwise direction perpendicular to𝑇𝑇 

at every point on 𝐶𝐶, then ∮ 𝑣𝑣.𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐 = 0, that is the curve does not move at all. 

44.5 Line Integral Independent of the Path 

Let 𝜙𝜙(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) be a differentiable scalar function. The differential of 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is defined as 

                   𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 =grad 𝜙𝜙.𝑑𝑑𝑑𝑑 

Therefore, a differential expression expre 𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑥𝑥 + 𝑔𝑔(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 + ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 is 
an exact differential, if there exists a scalar function 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) such that 

                  𝑑𝑑𝑑𝑑 = 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 + 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑 + ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑑𝑑𝑑𝑑. 

 We now present the result on the independence of the path of a line integral 
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44.5.1 Theorem 

Let 𝐶𝐶 be a curve in simply connected domain 𝐷𝐷 in space. Let 𝑓𝑓,𝑔𝑔 and ℎ be continuous 

function having continuous first partial derivatives in 𝐷𝐷. Then ∫ 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑔𝑔𝑔𝑔𝑔𝑔 + ℎ𝑑𝑑𝑑𝑑𝐶𝐶  is 
independent of path 𝐶𝐶 if and only if the integrand is exact differential in 𝐷𝐷. 

44.5.2 Example  

Show that ∫ 𝑥𝑥𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦𝑦𝑦
�𝑥𝑥2+𝑦𝑦2𝐶𝐶  is independent of path of integration which does not pass through the 

origin. Find the value of the integral from the point 𝑃𝑃(−1,2) to the point 𝑄𝑄(2,3). 

Solution 

We have 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥
�𝑥𝑥2+𝑦𝑦2   and   𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑦𝑦

�𝑥𝑥2+𝑦𝑦2 

Now 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −𝑥𝑥𝑥𝑥/(𝑥𝑥2 + 𝑦𝑦2)3/2  and  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑥𝑥𝑥𝑥/(𝑥𝑥2 + 𝑦𝑦2)3/2 

Since 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 , the integral is independent of any path of integration which does not pass 
through the origin. Also, the integrand is an exact differential. Therefore, there exists a 
function 𝜙𝜙(𝑥𝑥, 𝑦𝑦) such that  

         𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥
�𝑥𝑥2+𝑦𝑦2 and  𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑔𝑔(𝑥𝑥,𝑦𝑦) = 𝑦𝑦

�𝑥𝑥2+𝑦𝑦2 

Integrating the first equation with respect to 𝑥𝑥, we get 𝜙𝜙(𝑥𝑥,𝑦𝑦) = �𝑥𝑥2 + 𝑦𝑦2 + ℎ(𝑦𝑦). 

Substituting in 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑦𝑦
�𝑥𝑥2+𝑦𝑦2 = 𝑦𝑦

�𝑥𝑥2+𝑦𝑦2 + 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

  or 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 0 or ℎ(𝑦𝑦) = 𝑘𝑘, constant. 

Hence 𝜙𝜙(𝑥𝑥,𝑦𝑦) = �𝑥𝑥2 + 𝑦𝑦2 + 𝑘𝑘 

Therefore, ∫ 𝑥𝑥𝑥𝑥𝑥𝑥+𝑦𝑦𝑦𝑦𝑦𝑦
�𝑥𝑥2+𝑦𝑦2𝐶𝐶 = ∫ 𝑑𝑑(�𝑥𝑥2 + 𝑦𝑦2)(2,3)

(−1,2) = [�𝑥𝑥2 + 𝑦𝑦2](−1,2)
(2,3) = √13 − √5 
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Module-IV: Vector Calculus 

Lesson 45 

Green’s Theorem in the Plane 

45.1 Introduction 

The theorem provides a relationship between a double integral over a region and the line 
integral over the closed curve C bounding R. Green’s theorem is also called the first 
fundamental theorem of integral vector calculus. 

45.2 The Main Result 

45.2.1 Theorem: (Green’s theorem) 

Let C be a piecewise smooth simple closed curve bounding a region R. If f, g, / , /f y g x∂ ∂ ∂ ∂   
are continuous on R, then 

                                     ( , ) ( , )
C R

g ff x y dx g x y dy dxdy
x y

 ∂ ∂
+ = − ∂ ∂ 

∫ ∫∫  

The integration being carried in the positive direction (counter clockwise direction) of C. 

Proof: We shall prove Green’s theorem for a particular case of the region R. 

Let the region R be simultaneously expressed in the following forms. 

( ) ( )1 2:  ,  R u x y u x a x b≤ ≤ ≤ ≤  

( ) ( )1 2:  ,  R v x x v x c y d≤ ≤ ≤ ≤  

We obtain 

[ ]
2

1

( )

2 1
( )

2 1

( ( ), ) ( ( ), )

( ( ), ) ( ( ), ) ( , )

v yd d

R c v x c

d c

c d C

g gdxdy dx dy g v y y g v y y dy
x x

g v y y dy g v y y dy g x y dy

 ∂ ∂
= = − 

∂ ∂  

= + =

∫∫ ∫ ∫ ∫

∫ ∫ ∫
 

the integration being carried in the counter clockwise direction. 

We obtain  

[ ]
2

1

( )

2 1
( )

2 1

( , ( )) ( , ( ))

( , ( )) ( , ( )) ( , )

u yb b

R a u x a

b a

a b C

f fdxdy dy dy f x u x f x u x dx
x y

f x u x dx g x u x dx f x y dx

 ∂ ∂
= = − 

∂ ∂  

= + = −

∫∫ ∫ ∫ ∫

∫ ∫ ∫
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the integration being carried in the counter clockwise direction. Therefore  

( , ) ( , )
C R

g ff x y dx g x y dy dxdy
x y

 ∂ ∂
+ = − ∂ ∂ 

∫ ∫∫ . 

45.2.2 Example : Evaluate  

2 2( ) ( 2 ) ,
C

x y dx y x dy+ + +∫ where C is the boundary of the region in the first quadrant that is 

bounded by the curves 2y x=  and 2x y= . 

Solution: The curves intersect at (0,0) and (1,1). The bounding curve is C. We have 
2 2( , )f x y x y= +  and ( , ) 2g x y y x= + . 

Using the Green’s theorem, we obtain  

2

2 2

1 1
2

2
0 0

1
2 4

0

( ) ( 2 ) (2 2 )

(2 2 ) (2 ) |

(2 2 ) 11/ 30

C R

x

x

x y dx y x dy y dxdy

xy dydx y y dx
x

x x x x dx

+ + + = −

= − = −

= − − + =

∫ ∫∫

∫ ∫ ∫

∫

 

45.2.3 Example: Find the work done by the force 2 3( ) ( )F x y i x y j= − + +  in moving a 

particle along the closed path C containing the curves 2 20, 16x y x y+ = + =  and y x=  in the 
first and fourth quadrants. 

Solution: The work done by the force is given by 

W = 2 3. ( ) ( ) .
C C

W F dr x y dx x y dy= = − + +∫ ∫ 

 

The closed path C bounds the region R. Using the Green’s theorem, we obtain  

2 3 2( ) ( ) (1 3 ) .
C R

x y dx x y dy y dxdy− + + = +∫ ∫∫  

It is convenient to use polar coordinates to evaluate the integral. The region R is given by 

: cos , sin ,0 4, / 4 / 4.R x r y r rθ θ π θ π= = ≤ ≤ − ≤ ≤  

Therefore, 
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/4 4 /4 2
2 2 2 4 2

/4 0 /4

/4 /4
2

/4 /4

43(1 3 ) (1 3 sin ) sin
02 4

(8 192sin ) [8 96(1 cos 2 )]

/ 4
2[104 48sin 2 ] 52 96.

0

R

ry dxdy r rdrd r d

d d

π π

π π

π π

π π

θ θ θ θ

θ θ θ θ

π
θ θ π

− −

− −

 
+ = + = + 

 

= + = + −

= − = −

∫∫ ∫ ∫ ∫

∫ ∫  

45.2.4 Example: Verify the Green’s theorem for ( , ) sin , ( , ) cosx xf x y e y g x y e y− −= = and C 
is the square with vertices at (0,0), (π/2,0), (π/2,π/2), (0,π/2). 

Solution: We can write the line integral as  

1 2 3 4

( )
C C C C C

fdx gdy fdx gdy
 

+ = + + + + 
  

∫ ∫ ∫ ∫ ∫   

 

where 1 2 3, ,C C C  and 4C are the boundary lines. We have along 1 : 0,0 / 2C y x π= ≤ ≤  and 

1

(sin cos ) 0,x

C

e ydx ydy− + =∫  

along 2 : / 2,0 / 2C x yπ π= ≤ ≤  and 

2

/2
/2 /2

0

(sin cos ) cos ,x

C

e ydx ydy e ydy e
π

π π− − −+ = =∫ ∫  

along 3 : / 2, / 2 0C y xπ π= ≤ ≤  and 

3

0
/2

/2

(sin cos ) 1,x x

C

e ydx ydy e dx e π

π

− − −+ = = −∫ ∫  

along 4 : 0, / 2 0C x yπ= ≤ ≤  and 

4

0

/2

(sin cos ) cos 1.x

C

e ydx ydy ydy
π

− + = = −∫ ∫  

Therefore,  

/2 /2
/2

0 0

( 2 cos ) ( 2 cos ) 2( 1).x x

C R

fdx gdy e y dxdy e ydxdy e
π π

π− − −+ = − = − = −∫ ∫∫ ∫ ∫

 

45.2.5 Example: Now we use the Green’s theorem to show that  
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2 ,
C R

u ds udxdy
n
∂

= ∇
∂∫ ∫∫  

where 2∇ is the Laplace operator 2 2 2 2/ /x y∂ ∂ + ∂ ∂  and n is the unit outward normal to C. 

Solution: 

Let the position vector of a point on C, in terms of the arc length ( ) ( ) ( ) .r s x s i y s j= +  

Then, the tangent vector to C is given by 

dr dx dyT i j
ds ds ds

= = +  

and the normal vector n is given by (since . 0nT = ) 

.dy dxn i j
ds ds

= −  

Note that n is the unit normal vector. Now  

.
C C

u ds u nds
n
∂

= ∇
∂∫ ∫ 

 

since /u n∂ ∂ is the directional derivative of u in the direction of n. Therefore, using Green’s 
theorem, we obtain  

2 2
2

2 2 .

C C C

R R

u u y u x u uds ds dx dy
n x s y s y x

u u dxdy udxdy
x y

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − = − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 ∂ ∂
= + = ∇ ∂ ∂ 

∫ ∫ ∫

∫∫ ∫∫

  

 

 

Suggested Readings 

Courant, R. and John, F. (1989), Introduction to Calculus and Analysis, Vol. II, Springer-

Verlag, New York. 

Jain, R.K. and Iyengar, S.R.K. (2002) Advanced Engineering Mathematics, Narosa 

Publishing House, New Delhi. 

Jordan, D.W. and Smith, P. (2002) Mathematical Techniques, Oxford University Press, 
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Module-IV: Vector Calculus 

Lesson 46 

Surface Integral 

46.1 Introduction 

The double and triple integrals are the generalizations of the definite integral ( )
b

a

f x dx∫ to two 

and three dimensions respectively. The surface area integral is a generalization of the arc 
length integral  

21 ( ') .
b

a

y dx+∫  

We shall now present a generalization of the line integral ( , )
C

f x y ds∫ to three dimensions. 

This generalization is called the surface integral. 

Let ( , , )g x y z be a given function defined in the three dimensional space and let S be surface 
which is the graph of a function ( , ),z f x y=  or 1( , ),y h x z=  or ( , ).x h y z=  We assume that 
(i) ( , , )g x y z  is continuous at all points on S, (ii) S is smooth and bounded and (iii) the 
projection R of the surface S on x-y plane, x-z plane, or y-z plane respectively expressed  in 
the forms as assumed in the proof of the Green’s theorem. For example, the projection R on 
the x-y plane can be expressed in the forms 

 ( ) ( )1 2:  ,  R u x y u x a x b≤ ≤ ≤ ≤  

or ( ) ( )1 2:  ,  R v x x v x c y d≤ ≤ ≤ ≤ . 

The surface integral can be defined in a similar way as the double integral is defined. 
Subdivide S into n parts 1 2, ,..., nS S S  of areas 1 2, ,..., .nA A A∆ ∆ ∆  The projection R of S is 

therefore partitioned into n rectangles 1 2, ,..., .nR R R  We choose an arbitrary point 

( , , )k k k kP x y z  on each element of the surface area kS and form the sum 

1
( , , ) .

n

n k k k k
k

I g x y z A
=

= ∆∑  

Let  n →∞ , such that the largest element of the surface area shrinks to a point. This implies 
that as n →∞ ,the length of the longest diagonal of the projected rectangles tends to zero. In 
the limit as n →∞ , the sequence { }nI  has a limiting value which is independent of the way S 

is subdivided and the choice of kP  on kS . This limiting value is called the surface integral of 
( , , )g x y z  over S.   

That is, we define the surface integral as  
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| | 0 1
( , , ) lim ( , , ) .

n

k k k kd kS

g x y z dA g x y z A
→

=

= ∆∑∫∫  

where | |d is the length of the longest diagonal of the projected rectangles.  

The surface integral can be evaluated in any of the following ways. 

(i) Let  S be represented in parametric form as ( , ).r r u v=  Then we can write  

*

*

2 2 2 1/2

( , , ) [ ( , ), ( , ), ( , )] | |

[ ( , ), ( , ), ( , )][ ( . ) ]

u v
S R

u v u v
R

g x y z dA g x u v y u v z u v r r dudv

g x u v y u v z u v r r r r dudv

= ×

= −

∫∫ ∫∫

∫∫
 

where *R is the region corresponding to S in the u-v plane. 

(ii) Let  S be represented in the form ( , ).z f x y=  Then we can write  
2 2 1/2

1( , , ) [ , ( , ), ][1 ]x y
S R

g x y z dA g x h x z z f f dxdy= + +∫∫ ∫∫  

where R is the orthogonal projection of S on the x-y plane. 

(iii) Let  S be represented in the form 1( , ).x h y z=  Then we can write  
2 2 1/2

1 1( , , ) [ ( , ), , ][1 ( ) ( ) ]x y
S R

g x y z dA g h y z y z h h dxdz= + +∫∫ ∫∫  

where R is the orthogonal projection of S on the x-z plane. 

(iv) Let  S be represented in the form ( , ).x h y z=  Then we can write  
2 2 1/2( , , ) [ ( , ), , ][1 ]y z

S R

g x y z dA g h y z y z h h dydz= + +∫∫ ∫∫  

where R is the orthogonal projection of S on the y-z plane. 

 

If S is piecewise smooth and consists of the surfaces 1 2, ,..., ,kS S S  then  

1 2

( , , ) ( , , ) ( , , ) ... ( , , )
kS S S S

g x y z dA g x y z dA g x y z dA g x y z dA= + + +∫∫ ∫∫ ∫∫ ∫∫ . 

We now present some of the important applications of the surface integrals. 

46.2 Mass of a Surface 

Let ( , , )x y zρ denote the density of a surface S at any point or mass per unit surface area. 
Then, the mass m of the surface is given by  
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 ( , , ) .
S

m x y z dAρ= ∫∫  

46.3 Moment of Inertia 

Let ( , , )x y zρ denote the density of a surface S at any point. Then, the moment of inertia I of 
the mass m with respect to a given axis l is defined by the surface integral  

2( , , ) .
S

I x y z d dAρ= ∫∫  

where d is the distance of the point (x,y,z) from the reference axis l. If the surface is 
homogeneous, then ( , , )x y zρ = constant and ( , , )x y zρ =m/A, where A is the surface area of 
S. Then,  

2

S

mI d dA
A

= ∫∫  

46.3.1 Example: Find the mass of the surface of the cone 2 22 , 2 7,z x y z= + + ≤ ≤  in the 
first octant, if the density ( , , )x y zρ  at any point of the surface is proportional to its distance 
from the x-y plane.  

Solution: The density is given by ( , , ) ,x y z cz cρ = is constant. We have  

2 2

2 2 2 2
( , ) 2 , ,x y

x yz f x y x y f f
x y x y

= = + + = =
+ +

 

2
2 2

2
2 2 2 21 1 2 .x y
x ydA f f dxdy dxdy dxdy

x y x y
= + + = + + =

+ +
 

The projection of S on the x-y plane is given by 2 2: 25,R x y+ =  in the first quadrant. 

Therefore, mass of the surface is given by  

2 2

2 2

[2 ] 2

2 [2 ]
S R

R

m czdA c x y dxdy

c x y dxdy

= = + +

= + +

∫∫ ∫∫

∫∫
 

Substituting cos , sin ,0 / 2,x r y rθ θ θ π= = ≤ ≤ we obtain  

55 /2 /2 3
2

0 0 0 0

2 (2 ) 2
3

125 100 22 25 .
3 2 3

rm c r rdrd c r d

c c

π π

θ θ

π π

 
= + = + 

 

 = + = 
 

∫ ∫ ∫
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46.3.2 Example: Evaluate the integral 
S

ydA∫∫ where S is the portion of the cylinder 

26x y= − in the first octant bounded by the planes 0, 0, 0x y z= = = and 8.z =  

Solution: The equation of the surface is in the form ( , ).x h y z=  Here 2( , ) 6h y z y= − and 
( , , ) .g x y z y=  We have  

2 2 1/2 2 1/22 , 0, (1 ) (1 4 ) .y z y zh y h h h y= − = + + = +  

The projection of S on the y-z plane is the rectangle OABC with sides 0, 6, 0y y z= = =  
and 8.z = Therefore,  

6 8
2 1/2 2 1/2

0 0

62 3/2
3/2

0

(1 4 ) (1 4 )

(1 4 ) 2 2488 [(25) 1] .
8(3 / 2) 3 3

S R

ydA y y dydz y y dydz

y

= + = +

 +
= = − = 

 

∫∫ ∫∫ ∫ ∫

 

46.3.3 Example: Evaluate the surface integral .
S

F ndA∫∫  where 6 6 3F zi j yk= + +  and S is 

the portion of the plane 2 3 4 12,x y z+ + = which is in the first octant. 

Solution: Let ( , , ) 2 3 4 12 0f x y z x y z= + + − =  be the surface. Then  

grad 12 3 4 , (2 3 4 ).
| | 29
gradff i j k n i j k
gradf

= + + = = + +  

Consider the projection of S on the x-y plane. The projection of the portion of the plane ABC 
in the first octant is the rectangle bounded by 0, 0x y= = and 2 3 12.x y+ =  We have  

.
. 4 / 29

dxdy dxdydA
n k

= =  

Therefore,  1. (12 18 12 ) .
29S S

F ndA z y dA= + +∫∫ ∫∫  

From the equation of the surface, we get 4 12 2 3 .z x y= − −  Hence,  
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(12 2 )/36 6
2

0 0 0

2 3

1 1. (54 6 3 ) (54 6 3 )
429

1 1(54 6 3 ) (360 102 7 )
4 6

61 7360 51 138.
06 3

S S R

x

x y

F ndA x y dA x y dxdy

x y dy dx x x dx

x x x

−

= =

= − + = − +

 
= − + = − + 

  
 = − + =  

∫∫ ∫∫ ∫∫

∫ ∫ ∫  
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Module-IV: Vector Calculus 

Lesson 47 

Stokes’s Theorem 

47.1 Introduction 

Let C be a curve in two dimensions which is written in the parametric form ( )r r s= . Then, 
the unit tangent vector to C is given by 

dx dyT i j
ds ds

= +  

Let v be written in the form .v gi fj= −  

Then . ( ). .dx dy dx dyv T gi fj i j g f
ds ds ds ds

 = − + = − 
 

 

By Green’s theorem , we have 

. . ( ). .
C C C R R

f gv dr v Tds gdx fdy dxdy v kdxdy
x y

 ∂ ∂
= = − = − + = ∇× ∂ ∂ 

∫ ∫ ∫ ∫∫ ∫∫ 

 \ 

This result can be considered as a particular case of the Stokes’s theorem. Extension of the 
Green’s theorem to three dimensions can be done under the following generalizations. 

(i) The closed curve C enclosing R in the plane → the closed curve C bounding an 
open smooth orientable surface S (open two sided surface). 

(ii) The unit normal n to C → the unit outward or inward normal n to S. 
(iii) Counter clockwise direction of C→ the direction of C is governed by the direction 

of the normal n to S. If n is taken as outward normal, then C is oriented as right 
handed screw and if  n is taken as inward normal, then C is oriented as left handed 
screw.  

47.2 The Main Result 

We now state the Stokes’s theorem. 

47.2.1 Theorem (Stokes’s Theorem): Let S be a piecewise smooth orient able surface 
bounded by a piecewise smooth simple closed curve C. Let 

1 2 3( , , ) ( , , ) ( , , ) ( , , )v x y z v x y z i v x y z j v x y z k= + +  be a vector function which is continuous and 
has continuous first order partial derivatives in a domain which contains S. If C is traversed  
in the positive direction, then  

. ( . ) ( ).
C C S

v dr v T ds v ndA= = ∇×∫ ∫ ∫∫ 

 

where n is the unit normal to S in the direction o orientation of C. 
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In terms of components of v we have 

1 2 3[ ( , , ) ( , , ) ( , , ) ] ( ). .
C S

v x y z dx v x y z dy v x y z dz v ndA+ + = ∇×∫ ∫∫

 

47.2.2  Remark:  As in divergence theorem, the theorem holds if the given surface S can be 
subdivided into finitely many special surfaces such that each of these surfaces can be 
described in the required manner. 

47.2.3   Remark: To prove the Stokes’s theorem, it is not necessary that the equation of the 
surface should be simultaneously written in the forms ( , ), ( , )z f x y y g x z= =  and ( , )x h y z=
. For example, if we take the question of the surface as ( , )z f x y=  and assume that ( , )f x y
has continuous second order partial derivatives then the theorem can be easily proved. 

47.2.4   Remark: (Physical interpretation of curl)  

We know that in rigid body rotation, if v denotes the tangential (linear) velocity of a point on 
it, then curl v represents the angular velocity of the uniformly rotating body.  We also know 
that a line integral of a vector field v around a simple closed curve C defines the circulation 
of v around C. For example, if v denotes the velocity of a fluid, then circulation gives the 
amount by which the fluid tends to turn the curve by rotating or circulating around C. 
Therefore, circulation (line integral) is closely related to curl of the vector field. To see this, 
let rC  be a small circle with centre at * * * *( , , )P x y z . Then, by Stokes’s theorem, we have 

. .
r rC S

v dr curlv ndA=∫ ∫∫

 

where rS is a small surface whose bounding curve is rC . Let ( , , )P x y z be any arbitrary point 

on rC . We approximate *( ) ( ).curlv P curlv P≈  Then, we have 

*

* * * *

*

. [ ( )]. ( ) [ ( ). ( )]

[ ( ). ( )]
r r rC S S

r

v dr curlv P n P dA curlv P n P dA

curlv P n P A

= =

=

∫ ∫∫ ∫∫

 

where rA is the surface area of rS . Let the radius r of rC tend to zero. Then, the 

approximation *( ) ( )curlv P curlv P≈ becomes more accurate and in the limit as 0,r → we get  

**

0

1( ). ( ) lim . .
r

r
r C

curlv P n P v dr
A→

= ∫  

The left hand side of the above equation is the normal component of curl v. The right hand 
side of equation is circulation of v per unit area. The left hand side is maximum when the 
circle rC is positioned such that the normal to surface, *( )n P  points in the same direction as 

*( ).curlv P  
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47.2.5  Remark: Stokes’s theorem states that the value of the surface integral is same for any 
surface as long as the boundary curve, bounding the projection R on any coordinate plane, is 
the same curve C. Hence, in the degenerate case, when S coincides with R, we can take n=k 
or j or i depending on whether the projection is taken on the x-y plane or x-z plane or y-z 
plane. 

47.2.6  Example: Verify Stokes’s theorem for the vector field 2 2(3 ) 2 2v x y i yz j y zk= − − − , 

where S is the surface of the sphere 2 2 2 16, 0.x y z z+ + = >  

Solution: Consider projection of S on the x-y plane. The projection is the circular region 
2 2 16, 0x y z+ ≤ =  and the bounding curve C is the circle 2 20, 16.z x y= + =  

We have  

2 2. (3 ) 2 2 (3 )
C C C

v dr x y dx yz dy y zdz x y dx= − − − = −∫ ∫ ∫    

since z=0. Setting 4cos , 4sin ,x yθ θ= = we obtain 

2 2

0 0

3 1(3 ) 4(3cos sin )( 4sin ) 16 sin 2 (1 cos 2 )
2 2

116 2 16 .
2

C

x y dx d d
π π

θ θ θ θ θ θ θ

π π

 − = − − = − − −  

 = = 
 

∫ ∫ ∫

 

Now, 

2 2

2 2 2

/ / / ( 4 4 ) (0) (1)
3 2 2

2( ) 1 ( ), ( ). .
4 42

i j k
v x y z i yz yz j k k

x y yz y z

xi yj zk zn xi yj zk v n
x y z

∇× = ∂ ∂ ∂ ∂ ∂ ∂ = − + − + =
− − −

+ +
= = + + ∇× =

+ +

 

Therefore,  

( ). 16
4 4 . 4 ( / 4)S S R R R

z z dxdy z dxdyv ndA dA dxdy
n k z

π∇× = = = = =∫∫ ∫∫ ∫∫ ∫∫ ∫∫  

which is the area of the circular region in the x-y plane. Hence, Stokes’s theorem is proved. 
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47.2.7  Example: Evaluate 3 3(2
C

y dx x dy zdz+ +∫  where C is the trace of the cone 

2 2( )z x y= +  

intersected by the plane x=4 and S is the surface of the cone below z=4. 

 

Solution: We have 3 32v y i x j zk= + + and  

2 2

3 3

/ / / (0) (0) (3 6 ).
2

i j k
curlv x y z i j k x y

y x z
= ∂ ∂ ∂ ∂ ∂ ∂ = − + −  

If the outward normal to S is taken, then it points downwards. Then, the orientation of C is 
taken in the clockwise direction. Alternatively, if the inward normal to S is taken, then C is 
oriented in the counter clockwise direction. 

Let 2 2( , , ) 0f x y z x y z= + − =  be taken as the equation of the surface. Then, the normal and 
unit normal are given by 

2 2

xi yj xi yj zkN k
zx y

+ + −
= − =

+
 and 

2 2 2 2

( ) /
2( ) /

xi yj zk z xi yj zkn
zx y z z

+ − + −
= =

+ +
except at the 

origin. 

We have 
2 2 2 2(3 6 ) (3 6 )( ).

2 2 ( 1/ 2)S S S

x y x y dxdyv ndA dA− −
∇× = − = − −

−∫∫ ∫∫ ∫∫  

since ( . ) .dxdy n k dA=  Therefore, substituting cos , sin ,x r y rθ θ= = we obtain  

4 0
2 2 2 2 3

0 2

( ). (3 6 ) (3cos 6sin )
S R r

v ndA x y dxdy r drd
π

θ θ θ
=

∇× = − = −∫∫ ∫∫ ∫ ∫  

4 0 4 0
3 3

0 2 0 2

3 3[(1 cos 2 ) 2(1 cos 2 )] (3cos 2 1)
2 2

r drd r drd
π π

θ θ θ θ θ= + − − = −∫ ∫ ∫ ∫  

=
4 4 03 3sin 2 192 .

0 22 4 2
r θ θ π

π
   − =     

 

The bounding curve C is given by 2 2 16, 4.x y z+ = =  Now setting  4cos , 4sin ,x yθ θ= =  
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We obtain 

3 3 3 3

0
3 3

2
2 /2

4 4 4 4

0 0

2 2

64[2sin ( 4sin ) cos (4cos )]

256 [cos 2sin ] 1024 (cos 2sin

3 1 3 11024 . . 2 . . 192 .
4 4 2 4 2 2

C C

y dx x dy zdz y dx x dy

d

π

π π

θ θ θ θ

θ θ θ θ θ

π π π

+ + = +

= − +

= − − = − −

  = − − =    

∫ ∫

∫

∫ ∫

 

 

Hence, the theorem is verified. 
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Jain, R.K. and Iyengar, S.R.K. (2002) Advanced Engineering Mathematics, Narosa 

Publishing House, New Delhi. 

Jordan, D.W. and Smith, P. (2002) Mathematical Techniques, Oxford University Press, 

Oxford. 

Kreyszig, E. (1999) Advanced Engineering Mathematics, John Wiley, New York. 

Piskunov, N. (1974) Differentail and Integral Calculus, Vol. II, MIR Publishers, Moscow. 

Wylie, C. R. and Barrett, L.C. (2003) Advanced Engineering Mathematics, Tata McGraw-

Hill, New Delhi. 
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Module-IV: Vector Calculus 

Lesson 48 

Divergence Theorem of Gauss 

48.1 Introduction 

Let C be a curve in two dimensions which is written in the parametric form ( )r r s= . Then, the 
unit tangent and unit normal vectors to C are given by 

, .dx dy dy dxT i j n i j
ds ds ds ds

= + = −  

Then,  

( ). ( . )dx dy dy dxfdx gdy f g ds gi fj i j ds v n ds
ds ds ds ds

   + = + = − − =   
     

where .v gi fj= −  Also 

.( ) .g f i j gi fj v
x y x y

 ∂ ∂ ∂ ∂
− = + − = ∇ ∂ ∂ ∂ ∂   

Hence, Green’s theorem can be written in a vector form as  

( . ) ( . )
C R

v n ds v dxdy= ∇∫ ∫∫

 

The result is a particular case of the Gauss’s divergence theorem. Extension of the Greens’ 
theorem to three dimensions can be done under the following generalisations. 

(i) A region R in the plane →  a three dimensional solid D 
(ii) The closed curve C enclosing R in the plane → the closed surface S enclosing the 

solid D 
(iii) The unit outer normal n to C → the unit outer normal n to S. 
(iv) A vector field v in the  plane   →  a vector field v in the three dimensional space 
(v) The line integral ( . )

C

v n ds∫   → a surface integral ( . )
S

v n dA∫∫  

(vi) The double integral .
R

vdxdy∇∫∫  → a triple (volume) integral . .
D

vdV∇∫∫∫  
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48.2 The Main Result 

The above generalizations give the following divergence theorem. 

Theorem: (Divergence theorem of Gauss) Let D be a closed and bounded region in the three 
dimensional space whose boundary is a piecewise smooth surface S that is oriented outward. Let 

1 2 3( , , ) ( , , ) ( , , ) ( , , )v x y z v x y z i v x y z j v x y z k= + +  be a vector field for which 1 2,v v  and 3v are 
continuous first order partial derivatives in some domain containing D. Then,  

( . ) . ( )
S D D

v n dA vdV div v dV= ∇ =∫∫ ∫∫∫ ∫∫∫  

where n is the outer unit normal vector to S. 

 

Remark: The given domain D can be subdivided into finitely many special regions such that each 
region can be described in the required manner. In the proof of the divergence theorem, the 
special region D has a vertical surface. This type of region is not required in the proof. The 
region may have a vertical surface. For example, the region bounded by a sphere or an ellipsoid 
has no vertical surface. The divergence theorem holds in all these cases. The divergence theorem 
also holds for the region D bounded by two closed surfaces. 

 

Remark: In terms of the components of v, divergence theorem can be written as  

31 2
1 2 3

S D

vv vv dydz v dzdx v dxdy dxdydz
x y z

 ∂∂ ∂
+ + = + + ∂ ∂ ∂ 

∫∫ ∫∫∫  

or as  

 31 2
1 2 3( cos cos cos )

S D

vv vv v v dA dxdydz
x y z

α β γ
 ∂∂ ∂

+ + = + + ∂ ∂ ∂ 
∫∫ ∫∫∫ . 

Example:  Let D be the region bounded by the closed cylinder 2 2 16, 0x y z+ = =  and 4.z =  

Verify the divergence theorem if 2 23 6 .v x i y j zk= + +  

Solution: We have . 6 12 1.v x y∇ = + +  Therefore, 
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2

2

4
4 16

4 16
0

( . ) (6 12 1) .
y x

x y x
D z

v dV x y dydxdz
= −

=− =− −
=

∇ = + +∫∫∫ ∫ ∫ ∫
2

2

4
4 16

4 16
0

( . ) (6 12 1) .
y x

x y x
D z

v dV x y dydxdz
= −

=− =− −
=

∇ = + +∫∫∫ ∫ ∫ ∫  

Since ,x y  are odd functions, we obtain  

24 4
16 2

0
0 0

2 1

( . ) (4)(2)(2) 16 16

41 1616 16 sin 64 .
02 2 4

y x

y
D z

v dV dydx x dx

xx x π

= −

=
=

−

∇ = = −

  = − + =    

∫∫∫ ∫ ∫ ∫
 

The surface consists of three parts, 1S (top), 2S (bottom) and 3S (vertical), 

On 1 : 4,S z n k= =  

1 1 1

( . ) 4 4
S S S

v n dA zdA dA= = =∫∫ ∫∫ ∫∫ (area of circular region with radius 4)=64π. 

On 2 : 0, .S z n k= = −  

2 2

( . ) 0.
S S

v n dA zdA= = − =∫∫ ∫∫  

On 2 2
3 2 2

2 2 1: 16, ( )
42

xi yjS x y n xi yj
x y
+

+ = = = +
+

 

3 3

3 31( . ) (3 6 ) .
4S S

v n dA x y dA= = +∫∫ ∫∫  

Using the cylindrical coordinates, we write 4cos , 4sin , 4 .x y dA d dzθ θ θ= = =  

Therefore, 

3

4 2
3 3

0 0

2

0

1( . ) [192cos 348sin ]4
4

192 [(cos3 3cos ) 2(3sin sin 3 )]

S z

v n dA d dz
π

θ

π

θ θ θ

θ θ θ θ

= =

= +

= + + −

∫∫ ∫ ∫

∫
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Hence, ( . ) ( . ) .
S D

v n dA v dV= ∇∫∫ ∫∫∫  

Green’s Identities (formulas) 

Divergence theorem can be used to prove some important identities, called Green’s identities 
which are of use in solving partial differential equations. Let f and g be scalar functions which 
are continuous and have continuous partial derivatives in some region of the three dimensional 
space. Let S be a piecewise smooth surface bounding a domain D in this region. Let the 
functions f and g be such that v=f grad g Then, we have 

2.( ) .f g f g f g∇ ∇ = ∇ +∇ ∇  

By divergence theorem, we obtain  

( . ) ( . ) .( )
S S D

v n dA f g n dA f g dV= ∇ = ∇ ∇∫∫ ∫∫ ∫∫∫  

2( . ) .
D

f g f g dV∇ +∇ ∇∫∫∫  

 

Now, .g n∇  is the directional derivative of g in the direction of the unit normal vector n. 
Therefore, it can be denoted by / .g n∂ ∂  We have the Green’s first identity as 

2( . ) ( . ) .
S S D

gf g n dA f dA g f g f dV
n
∂

∇ = = ∇ +∇ ∇
∂∫∫ ∫∫ ∫∫∫  

Interchanging f and g, we obtain  

2( . ) ( . ) .
S S D

fg f n dA f dA g f g f dV
n
∂

∇ = = ∇ +∇ ∇
∂∫∫ ∫∫ ∫∫∫  

Subtracting the two results, we obtain the Green’s second identity as  

  

2 2( ). ( ) .
S S D

g ff g g f ndA f g dA f g g f dV
n n
∂ ∂ ∇ − ∇ = − = ∇ − ∇ ∂ ∂ ∫∫ ∫∫ ∫∫∫  

Let f=1. Then, we obtain  
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2
. .

S S D

yg ndA dA gdV
n
∂

∇ = = ∇
∂∫∫ ∫∫ ∫∫∫  

If g is a harmonic function, then 2 0g∇ = and we have  

. 0.
S S

yg ndA dA
n
∂

∇ = =
∂∫∫ ∫∫  

This equation gives a very important property of the solutions of Laplace equation, that is of 
harmonic functions. It states that if ( , , )g x y z  is a harmonic function, that is, it is a solution of the 
equation 

2 2 2

2 2 2 0g g g
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

Then, the integral of the normal derivative of g over any piecewise smooth closed orient able 
surface is zero. 

Suggested Readings 

Courant, R. and John, F. (1989), Introduction to Calculus and Analysis, Vol. II, Springer-Verlag, 

New York. 

Jain, R.K. and Iyengar, S.R.K. (2002) Advanced Engineering Mathematics, Narosa Publishing 

House, New Delhi. 

Jordan, D.W. and Smith, P. (2002) Mathematical Techniques, Oxford University Press, Oxford. 

Kreyszig, E. (1999) Advanced Engineering Mathematics, John Wiley, New York. 

Piskunov, N. (1974) Differentail and Integral Calculus, Vol. II, MIR Publishers, Moscow. 

Wylie, C. R. and Barrett, L.C. (2003) Advanced Engineering Mathematics, Tata McGraw-Hill, 

New Delhi. 
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