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Module 1: Differential Calculus

Lesson 1

Rolle’s Theorem, Lagrange’s Mean Value Theorem , Cauchy’s Mean Value

Theorem

1.1 Introduction

In this lesson first we will state the Rolle’s theorems, mean value theorems and

study some of its applications.

Theorem 1. 1 [Rolle's Theorem]: Let f be continuous on the closed interval

[a, b] and differentiable on the open interval (a, b). If f(a) = f(b), then there

exists at least one number ¢ in (a, b) such that f'(¢) = 0.

Proof: Assume f(a)=f(b)=0. If f(a)=f(b)=k and k =0, then we

consider f(x) — k instead of f(x). Since f(x) is continuous on [a, k] it attains

its bounds: Let M and m be both maximum and minimum of f(x) on [a,b]. If

M=m, then f(x)=m is throughout i.e., f(x) 1is constant on

[a,b] = f (x) = 0 for all x in [a,b]. Thus 3 at least one ¢ such thatf (¢) = 0.

Suppose M = m. If f(x) varies on (a, b) then there are points where f(c) > 0

or points where f(c) < 0 Without loss of generality assume M = 0 and the
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

function takes the maximum value at x = ¢, so that f(¢) = M. It is to be noted
that if c = a, f(c) = f(a) = 0 = f(b), which is a contradiction. Now as f(c)
Is the maximum value of the function, it follows that f(c + Ax) — f(c) < 0,

both when Ax = 0and Ax < 0.

Hence,
fle+an—f() _
Ax
when Ax = 0

fletdx)-f(e) -,
- =

when Ax < 0. Since it is given that the derivative at x = ¢ exists, we get
f(c)=0 when Ax >0 and f'(¢) =0 when Ax < 0. Combining the two
inequalities we have, f'(c) = 0.

Note: Rolle’s theorem shows that b/w any two zero’s of a function f(a) there
exists at least one zero o f(x) i.e., f(a) = f(b) clearly f is continous on [-1,1]

Example 1: Verify the Roll's theorem for f(x) = x* for all x € [-1,1].
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

Solution:

(i) f(1)=f(—1)=1, (ii) f is differentiable on [—1,1], so all conditions of

Roll's theorems are satisfying. Hence f'(¢) =2c =0 implies ¢=0 and

ce(—1,1).

Example 2: f(x) =1 — |x|in [-1,1].

Solution:

f(—1)=f(1)=0, f is continuous. But f(x) is not differentiable at x = 0.

Note that £'(x) = 0, for which f(x) is differentiable. As f'(x) = —1, for x > 0

and f'(x) = 1, for x < 0.

Example 3: Show that the equation 3x> + 15x — 8 = 0, has only one real root

Solution:

f(x) =3x>+ 15x— 8 is an odd degree polynomial, hence it has at least one

real root as complex roots occurs in pair.

Suppose 3 two real roots x,,x, such that x, < x,, then on [x;,x,], all

properties of Roll's theorem satisfied, hence 3 ¢ € (x4, x,), such that f'(¢) = 0,
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

But f'(x)=15x*+15=15(x*+1)>0, for all x, a contradiction to

Rolle’s therorem. Hence the equation has only one real root.

1.2. Mean Value Theorems

Theorem 1.2 [Lagrange's Mean Value Theorem]: If a function f(x) is

continuous on [a, b], differentiable (a, b), then there exists at least one point c,

a<c <b such that f(b)— f(a) = f (c)(b— a). Hence Lagrange's mean

value theorem can be written as

f(b)—f(a) = hf'(a+6h),whereh=b—a;0<6 < 1.

Geometrical Representation: If all points of the arc AB there is a tangent line,

then there is a point C between 4 and B at which the tangent is parallel to the

chord connecting the points A and B.

1.2.1 Cauchy's Mean Value Theorem

Cauchy's mean value theorem, also known as the extended mean value theorem,

Is the more general form of the mean value theorem.

Theorem 1.2 [Cauchy's Mean Value Theorem]: It states that if functions f

and g are both continuous on the closed interval [a,b], and differentiable on the
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

open interval (a,b) and g(a) + g(b) then there exists some ¢ € (a, b), such

that

fe) _ fB)-f(a)
g gb)-g@

Note 1: Cauchy's mean value theorem can be used to prove L'Hospital's rule.
The mean value theorem (Lagrange) is the special case of Cauchy's mean value

theorem when g(t) = t.

Note 2: The proof of Cauchy's mean value theorem is based on the same idea as

the proof of the mean value theorem

1.2.2 Another form of the statement: If f(x) and g(x) are derivable in

[a,a + h] and g (x) = 0 for any x € [a, a + h], then there exists at least one

number & € (0,1) such that

flath)-f(a) _ f (a+6h) 0<8<1)
glath)-g(a) g (a+6h)

Example 4: Write the Cauchy formula for the functions f(x) = x?, g(x) = x3

on [1,2].

www.AgriMoon.Com



10

Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

Solution:

Clearly  fand g are continous and diff.on[1,2] g(x) =3x2=0 iff

x=0,0€[12]. f(x)=2x Hence g(1) = g(2)

f@-f1) _ f©
g(2)-g1) g

. 2¢ . . 3 2 14
l.e.,, — =-—1implies==—,s0 c = —.
302 7 3c 9
1.2.3 The Intermediate Value Theorem It states the following: If y = f(x) is
continuous on [a, b], and N is a number between f(a) and f(b), then there is a
c € [a, b] such that f(c) = N.

1.2.4 Applications of the Mean Value Theorem to Geometric properties of

Functions.

Let £ be a function which is continuous on a closed inteval [a, b] and assume f

has a derivative at each point of the open interval (a, b). Then we have

1. )IfFf(x)=>0  for all x € (a,b), fis strictly increasing on [a, b].

2. (i) If f(x)<0  for all x € (a,b), f is strictly decreasing on
[a,D].

3. (i Iff(x)=0  for all x € (a,b), fis constant.
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

Intermediate value Theorem for Derivatives: If f'(x) exists for a < x < b,
with f'(a) = f (b) then for any number d between f'(a) and f'(b) there is a
number a < ¢ < b where f'(c) = d.

Application: If f'(x) exists with f'(x) # 0, on any interval then f has a

differentiable inverse, there.

Converse of Rolle’s theorem : - (need not true).
Example 1.5 Let f(x) be continuous on [a,b] and differentiable (a,b). If
3c € (a, b) such that f'(c) = 0, does it follow that f(a) = f(b)?

Solution:

No: Take for example f(x) = x* on [—1,2], f'(x) = 2x = 0 implies x = 0.
But f(—1)=1and f(2) = 4.

Example 1.6 Show that |sinx — siny| < |x — y]|
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

Solution:

Let f(t) = sint on [y,x], By mean value theorem sinx — siny = f (¢)(x — y),

Butf (t) = cost, and |cost| = 1, for all t. Hence

|sinx — siny| = |f () (x — )| = |x — y|

Example 1.7 Show that tan~*x, — tan""x; < x, — x,, forall x, > x,.

Solution:

Let f(x) =tan"*x on [x;,x,]. By mean value theorem tan™*x, — tan™'x,=

1

fr(fr'](xz —Xp) =

(x, — x,) but H% < 1 for all ¢. Hence the results.
(i

1+c%

Questions: Answer the following question.

1. Verify the truth of Rolle’s theorem for the functions
(8) f(x)=x"-3x+2on[1.2]
(b) () =(x=1)(x=2)(x-3)on [1,3]
(c) f(x)=sinxon (a) [0, 7]

2. The function f (x) =4x> + x> —4x—1 has roots 1 and -1. Find the root of the

derivative f'(x) mentioned in Rolle’ s throrem.

3. Verify Lagrange’s formula for the function f (x) =2x—x*on [0,1].
4. Apply Lagrange theorem and prove the inequalities

(i) e* >1+x (i) InQ+x)<x (x>0)
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Rolle’s Theorem, Lagrange’s Mean Value Theorem, Cauchy’s Mean Value Theorem

(iii) b" —a" <nb"*(b—a) for (b>a)

: . sinx
5. Using Cauchy’s mean value theorem show that Ilrrg— =1
X—> X

Keywords: Rolle’s Theorem, Lagrange's and Cauchy’s mean value;

L'Hospital's rule; Intermediate value.
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Module 1: Differential Calculus

Lesson 2

Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion

2.1 Introduction

In calculus, Taylor's theorem gives us a polynomial which approximates the
function in terms of the derivatives of the function. Since the derivatives are

usually easy to compute, there is no difficulty in computing these polynomials.

A simple example of Taylor's theorem is the approximation of the exponential
function e* near x = 0.
2 1T

+-=

3t n!

X

e* ~1+x —|—Z—2: 5
The precise statement of the Taylor’s theorem is as follows:
Theorem 2.1: If n=0 is an integer and f is a function which is n times
continuously differentiable on the closed interval [a,x] and n+1 times

differentiable on the open interval (a, x), then
Fo =@+ 2 -a

(2) (1)
+f () (x_a]2+—|—f—::a:](x—a]ﬂ+ﬁn(x)
n!
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion

Here, n! denotes the factorial of n, and R, (x) is a remainder term, denoting the

difference between the Taylor polynomial of degree n and the original function.

The remainder term R, (x) depends on x and is small if x is close enough to a.

Several expressions are available for it. The Lagrange form is given by

ARG n
R, (x) = m(x—a) l=a+6(x—a)

where 0 < 6 < 1.
If we put a = 0, Taylor's formula reduces to Maclaurin's formula.
where & lies between a and x.

Notes

e In fact, the mean value theorem is used to prove Taylor's theorem with the

Lagrange remainder term.

e The Taylor series of a real function f(x) that is infinitely differentiable in a

neighborhood of a real number a, is the power series of the form

Y ARG
n=0 (x —a)”
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion

e In general, a function need not be equal to its Taylor series, since it is
possible that the Taylor series does not converge, or that it converges to a

different function.

e However, for some functions f(x), one can show that the remainder term
R, (x) approaches zero as n approaches «c. Those functions can be expressed

as a Taylor series in a neighbourhood of the point a and are called analytic.

Example 2.1 Show that sinhx = x +§ + x—ﬁ + -

Solution:

Here f(x) = sinhx, f (x) = coshx, So
F) =F(0)+xf(0)+ ’;—?f”(n) 4.
Fo)=x+E+ 4.
Rn(x) = %f@ﬂ (a+6h).Butfora=0and h = x

R.(0)| = | = £ (6)]
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion

lim|R, | = lim| % ||cosh(8x)| = 0

Example 2.2 . Find the Taylor series expansion of ——

x=—4

- 1 1
Solution: f(x) = 24 (x+2)(x—2)

_|_
x+2 x-—2

1 1
4ix+2) 4{x—2)

! 1
8(1+2)  -8(1-3)

_ 1 T R B S |
. 9(1+2) 9(1 Ej

for|§| < 1, we have
1 1 x+ x2+ X,
=g+ +(=5)7 ]

—[+I+ O+ O]
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion

— 1 2 x?
=52+ )+ ]

Example 2.3 : Find f299(0) if f(x) = e*

Ans: f00(0) = %

Questions: Answer the following questions.

1.

2.

Expand in power of X—2 of the polynomial X' —5x* +5x* +x+2.
Expand in power of X+1 of the polynomial X* +2x*—x*+x+1.

Write Taylor’s formula for the function y =+/x when a=1,n=3.

Write the Maclaurin formula for the function y = v1+x when n=2.

Using the results of above problem, estimate the error of the approximate
equation 1+ x z1+%x—%x2 when x=0.2.

Write down the Taylor’s expansion for the function f(x) =sinx about the point

a=2= with n=4.
4

2
Applying Taylor’s theorem with remainder prove that 1+§—% <l+x< 1+§ if

x>0,

Applying Maclaurin’s theorem with remainder expand

(i) In(1+ x) (ii) (1+x)".
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Taylor's theorem / Taylor’s expansion, Maclaurin’s expansion

Keywords: Taylor’s Formula, Taylor’s Series, Maclaurin Formula and Series.
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Module 1: Differential Calculus

Lesson 3

Indeterminate forms ; L’Hospital’s Rule

3.1 Introduction

xT—16
x—4

4x% —5x

Consider the following limits lim and lim

x—4 A=W 4 g2

In the first limit if we put x = 4 we will get g and in the second limit if we

“plugged” in infinity we get _ix (recall that as x goes to infinity a polynomial

will behave in the same fashion that it’s largest power behaves). Both of these

are called Indeterminate form.

3.1.1 Indeterminate forms

First limit can be found by the factorizing the numerator cancelling the common

factor. That is

. x?—16

1Im

x—=4 X —4

— lim (x—4)x+4)
x—=4 x—4

= linl(x—k 4)

=8

The second limit can be evaluated as:
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Indeterminate forms ; L’Hospital’s Rule

However what about the following two limits. lim, ., % and lim

X—o

= This
X
first is a g indeterminate form, but we can’t factor this one. The second is an E

indeterminate form, but we can’t just factor an x* out of the numerator. Does

there exists some method to evaluate the limits? The answer is yes. By
(L'Hospital's Rule).

Suppose that we have one of the following cases,

& _ 2 o1 lim

lim
¥ gx) 0 R TES T

where a can be any real number, infinity or negative infinity. In these cases we

have,

lim 2% — jj L&
x—ag glx) x—=a g (x)
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Indeterminate forms ; L’Hospital’s Rule

Theorem 3.1: Suppose the functions f(x) and g(x) in [a,b], satisfy the

Cauchy Theorem and f(a) = g(a) = 0, then if the ratio f® has a limit as

g )
ote T fx) f _ o fe _
x — a, there also exists lim,._, , — s ,and lim,,_, = lim, _ . s A

Proof.: On the interval [a,b] take some point x = a. Applying the Cauchy's

mean value theorem we have

f(x)— f(a) :fr(_ﬂ
gx)—gla) g@)

where & is a number lies between a and x. But it is given that f(a) = g(a) =0

and so

If x—a then &—=a , since & lies between x and a. Suppose if

limx_,a 5 {x] = 4, by (1) limg_, f {g exists and is equal to A. Hence

www.AgriMoon.Com
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Indeterminate forms ; L’Hospital’s Rule

lim £ _ i L€
x—a glx) x—=a g (‘Q

= lim—= = llmJ1r ) =A
fuag () x—ag ()

and, finally,

lim — ) hmf.{—x]
x—a gix) x—a g (x)

Note 3.1: The theorem also holds for the case where the functions f(x) and
g(x) are not defined at x = a, but lim,_, f(x) = lim,_,g(x) = 0. We can

make them to be continuous at x = a by redefine f(a)=1lim,__f(x) =0,

g(a) =1lim,_ _ g(x) =0, since lim,._, % does not depend on whether the
oux

function f(x) and g(x) are defined at x = a.

Note 3.2: If f'(a) = g (a) = 0 and the derivatives f'(x) and g (x) satisfy the
conditions that we imposed by the theorem on the functions f(x) and g(x),

then applying the L'Hospital rule lim,._. ;i ?] limx_,a; E ; and so forth.
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Indeterminate forms ; L’Hospital’s Rule

Note 3.3: If g'(x) =0, but f'(x) = 0, then the theorem is applicable to the

reciprocal ratio %, which tends to zero as x — a. Hence, the ratio 2 tends to

x g(x)

infinity.
. —e 2y . g +e V-3
Example 3.1: lim = = lim
P *=0 o cinx x=0 4 cosx
i e¥ —e™* l e* +e”*
= lim,_, = lim, .
=0 ginx =0 cosx

Note 3.4: The L'Hospital rule is also applicable if lim,_.f(x)= 0 and

lim,._..g(x) = 0.

Put x ==, we see that z » 0 as x — c and therefore limz_,c,f(ij =0, and

=4

lim,_, g(ﬁ] = 0. Applying the L'Hospital rule to the ratio

Fid
g—z we find that

1,
)
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Indeterminate forms ; L’Hospital’s Rule

1
jim fr;cr:; _ liﬂf%]
9 g9(;)

f -3
z~09 G)(—2)

v '
—limZ% = lim L&
z=08 Q)  x—xg )

which proves the results.

We also stated in earlier that if both f(x) and g(x) approaching infinity as

x — a (or x — ), the L'Hospital rule is also applied.

Example 3.2: Find lim,_z—— (%)

z tandx =@

Solution:

Taking derivative both numerator and denominator five times we obtain: Ans: 3

Other Indeterminate forms :

The other indeterminate forms reduce to the following cases. (a) 0.0 (b) 0° (c)

0° (d) 1= (e)o0 — .
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Indeterminate forms ; L’Hospital’s Rule

(@ Let lim,.,f(x)=0lim,.,g(x)=9x it is required to
lim, ., [f(x)g ()],

I.e. the indeterminate form 0.zc. Now

lim [f(x)g ()]

@
= [lImn

X—=a 1

1€3)

or FO)g(x) = 2% If lim F(x) = o0,x > a & limg(x) = 0,x > a

fla)
. . 0 .
which is (E)' form or one can write

lim 2.2

X—=a fl_x}

()- form
oo
Example 3.3
) .1
limx"lnx = lim TM
x—0 x—0 .r_n
1 n
- . X
=lim—%F—=lim—=10
x—=0 TynTl x—=0n

www.AgriMoon.Com
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Indeterminate forms ; L’Hospital’s Rule

b) Let lim,.,f(x)=0 lim,_ ,g(x)=0, it is required to find
lim,._ [f(x)]9%). Put y = [f(x)]9®). Taking logarithms of both sides of it, we
have

Iny = g(x)[Inf(x)]

limlny = Inlimy

X—=a X—a

(by the continuity of Iny) and if Inlim,__y = b = e® = lim

x*ﬂy'
Similarly we can find the Indeterminate form «0°, 1%
Example 3.4: lim, _,x* Solution: Put y = x*,

limlny = limxlnx
x—=0 x—=0

= lim (xInx) = lim 2%

x—=0 x—=0 E

Solim,_,y=¢e? =1

Example 3.5: Find the lim,_, (=)=

Ans: 1
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Indeterminate forms ; L’Hospital’s Rule

Example 3.6 Using Taylor's formula compute

] X — sinx
lim s
x—=0

e¥—1—x—=
2
Ans: 1

Questions: Answer the following questions.

Evaluate the following limits :

. -1
1. lim,_, ——
x—1 xn_l

. =3 -
2. lim,_,——

cosx—1

sin x

——
Y1-—cosx

e + siny—1

4. lim,._o In(1+y)

In{x—1)—x

i
tan—
2

5. lim,_,

x 1

6. lim,_, L—— —

-1 Inx

1
7. lim,_,(cotx)inx
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Indeterminate forms ; L’Hospital’s Rule

tanx
8. 1im,_o (%)
Ans.: 1.1, 2. -2, 3. Limit does not exist, 4. 2, 5. 0, 6. g 7. é& 8.1

Keywords: Indeterminate forms ; L’Hospital’s Rule.
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Module 1: Differential Calculus

Lesson 4

Limit, Continuity of Functions of Two Variables

4.1 Introduction

So far we have studied functions of a single (independent) variables. Many
familiar quantities, however, are functions of two or more variables. For
instance, the work done by the force (W = F.D) and the volume of the rigid
circular cylinder (V = mr?h) are both functions of two variables. The volume of

a rectangular solid (V¥ = xyz) a function of three variables. The notation for a

function of two or more variables is similar to that for a function of single

variable.

Example 4.1: z = f(x, v) = x* + xy (two variables)

Example 4.2: w = f(x,y,z) = x + 2y — 3z (three variable)

A function f of two variables is a rule that assigns a real number z = f(x, y) to

each ordered pair (x,y) of real numbers in the domain of f. The range of f is

the set of all values of the function: {z|z = f(x, y) where (x, y) € D}.
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Limit, Continuity of Functions of Two Variables

In concrete terms: A function z = f(x, y) is usually just a formula involving the

two variables x and y. For every x and y we put in, we get a number z out. The

set of all (x,y) we allowed to put into the function is called the domain of the

function. Usually the domain is unspecified, and then the domain is the set of all

(x, ¥) we can put into the formula for f and not get square roots of negatives, or

division by zero, or some such. i.e.,the domain is usually the set of all (x, y) we

can put into the function without getting an undefined expression.

This is the natural domain. The range is simply all the numbers z we can “hit”

by putting all (x, y) from the domain into the function.

Example: 4.3: Let f(x,y) = /49 — xZ — y2. The domain is the disk of radius
7, centre at origin. Now 49 — x* — y* will be bigger if x,y ar each smaller. So
f(x,y) is biggest when x = y = 0. This is f£(0,0) = 7. Now the smallest value
can achieve is 0, when 49 — x* — y? = 0 (which happens, for example when
x=7and y=0). If 49—x* —y? <0, f could not be defined. Hence the

range is [0,7].
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Limit, Continuity of Functions of Two Variables

Definition. The graph of a function f of two variables is the set

{(6y,2)|z = f(x,y) for some (x,y) € D},

where D is the domain of f. That is, the graph is the surface z = f(x,y) in 3-

dimensinal Euclidean Space R,

4.1.1 A contour curves or level curves

A contour curve for a function z = f(x, y) is a trace of the surface z = f(x, y)

parallel to the xy-plane. That is, let z =k for some number k, and plot

k = f(x,y) in the xy-plane.

The domain of a function of two variables f, which is denoted dom(f) from

now onwards is the set of all points (x, y) in the xy-plane for which f(x,y) is

defined. For example, 4 = {(x, y)|x = y} means that A is the set of points

(x,v) such that x is greater than y.

Example 4.4. Determine the domain of f(x,y) = In(y — 2x)
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Limit, Continuity of Functions of Two Variables

Solution:

Since the argument of In(.) must be positive, the domain of f is the set of
points (x, y) for which the denominator is not equal to 0. However, y — 2x > 0

means that y = 2x. In set notation this is written as dom(f) = {(x, y)|v = 2x}.

Most of the sets in the xy-plane we encounter will be bounded by a closed

curve.
As a result, we define an open region to be the set of all points inside of but not
including a closed curve, and we define a closed region to be the set of all
points inside of and including a closed curve.

Equivalently, a point (p,q) is said to be a boundary point of a set S if any circle

centered at (p,q) contains both points inside of and outside of S, and

correspondingly, a set S is open if it contains none of its boundary points and

closed if it contains all of its boundary points.

Example 4.5. Determine if the domain of the following function is open or

closed. f(x,¥) = /9 —x2 —y?
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Limit, Continuity of Functions of Two Variables

Solution:

To begin with, the quantity 9 — x* — y2cannot be negative since it is under the

square root. Thus, the domain of f is the set of points that satisfy

9—x?—y2=00r9 = x?+vy2

That is, the domain is the set of points (x, y) inside and on the circle of radius 3

centered at the origin, which we write as dom(f) = {(x, y)|x* + y* < 9},

Moreover, the domain is a closed region of the xy-plane since it contains the

boundary circle of radius 3 centered at the origin.

We say that a region S is connected if any two points in S can be joined by a

curve which is contained in S;

4.1.2 Functions of Space and Time

Functions of two variables are important for reasons other than that their graph
Is a surface. In particular, a function of the form u(x,t) is often interpreted to be
a function of x at a given point in time. For example, let's place an xy-
coordinate system on a violin whose strings have a length of I, If u(xt) is
considered the displacement of a string above or below a horizontal line at a

point x and at a time ¢, then y = u(x,t) is the shape of the string at a fixed time t.
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Limit, Continuity of Functions of Two Variables

Likewise, u (X, t) might represent the temperature at a distance xfrom one end of

the rod at time ¢.

4.1.3 Limits and Continuity

Now we will extend the properties of limits and continuity from the familiar
function of one variable to the new territory of functions of two or more

variables.

Let us recall limit of function of single variable: Let f be a function defined on
an open interval containing a (except possible at a) and let L be a real number.
The statement lim,,_, f(x) = L means that for given £ > 0, there exists a § > 0

such that |f(x) — L| < &, whenever |x —a| < é.

In less formal language this means that, if the limit holds, then f(x) gets closer

and closer to L as x gets closer and closer to a.

Consider the following limits.

Lox—2  2-2 4
= = —*
ieax?—4 (=2)2—4 0

Good job if you saw this as “limit does not exist” indicating a vertical

asymptote at x = —2.
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Limit, Continuity of Functions of Two Variables

LoxX—2  2-2 0
= = — 3/
i2x?—4 (272—4 0

This limit is indeterminate. With some algebraic manipulation, the zero factors

could cancel and reveal a real number as a limit. In this case, factoring leads

x—2 ) x— 2

li 1
w2 x? — 4 xm2(x+2)(x—2)

e IR
T ai(x+2) 4

The limit exists as x approaches 2 even though the function does not exist. In

the first case, zero in the denominator led to a vertical asymptote; in the second

case the zeros cancelled out and the limit reveals a hole in the graph at (2,&].

The concept of limits in two dimensions can now be extended to functions of

two variables.

Definition 4.1 Let f be a function of two variables defined on an open disc

centered at (%, ¥,) i.e., {(x, y]h/(x —X5)% + (V—¥o)? < 7?1}, except polssible

at (Xp,¥o) , and let L be the real numbers Then
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My )y (X, ¥) = L if given £ > 0,3 § > 0 such that

|f(x,v) — L] < e whenever \/(x —%0)? + (Y — ¥,)? < 4.

Graphically for any point (x,y) # (X,¥,) in the disc with radiusé, the value

f(x,v) lies between L — eand L + €.

Example 4.6 Letz = f(x,y) =x*+ v+ 3.

For the limit of this function to exist at (-1,3), values of z must get closer to 13
as points (x,y) on the xy-plane get closer and closer to (-1,3).

lim, ,,_.1,3,/(x,3) = 13. For proof we have to go back to epsilon and delta.

Example 4.7 Verifying the limit by definition lim, .,z 5 X = a.

Solution:

We have to show that |x — a| < £ whenever \f(x— a)? + (y—b)? < 6. Now

x—a|l=/(x—a)?<J(x—a)’+(y—a) <d Let§ ==
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Limit, Continuity of Functions of Two Variables

F

Example 4.8. Show that lim,. 0,03 xa—:jz =0
Solution:
Now
xz}r Xz
= 5|v < By
lmayz =G5 =<5

< 5./x%+y2 < bé.

Put § =, whenever ,/(x — 0)2 + (y — 0)? < 6.

Example 4.9.

Solution:

To show that |(2x — 3v) — (—4)]| < &, whenever

Ja—DI+(y-27 <6

Now |2x — 3y + 4| = |2(x—1)—3(y—2)| = 2|x— 1| + 3|y — 2|

<28+35=56.Setd ==

pal

For a single variable function we have lim,_, , f(x) has two direction i.e.,
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Limit, Continuity of Functions of Two Variables

lim f(x) and lim f(x).

But in case of function of two variables the limg, .5 f(x1), (x,¥)

approaches to (a, b) in infinitely many directions.

z_ .z
Example 4.10: Test whether lim, ., .09 %)2 exists.

Solution:

Let (x,y) — (0,0) on the line y = mx. So

2 _ .2 2 2..2

(x3)=(0,0) x2 + Y2 x50 x2 + m2x?
L
- 14m2

As depend on m, so the limit does not exist.

Example 11: Solution: Let x =rcosf, y =rsind, (x,y) — (0,0) implies

sinr? sint

r — 0. The limit becomes lim, ., —— = lim;,— = 1.

Definition of Continuity of a Function of Two Variables
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Limit, Continuity of Functions of Two Variables

A function of two variables is continuous at a point (a, b) in an open region S if
f(a,b) is equal to the limit of f(x,v) as (x,y) approaches (a,b). In limit

notation:

lim  f(xy)= f(a,b)

(x.3)—(ab)
Give Definition
The function f is continuous in the open region S if f is continuous at every

point in S.

The following results are presented without proof. As was the case in functions

of one variable, continuity is “user friendly”. In other words, if k is a real
number and f and g are continuous functions at (a, b) then the functions below

are also continuous at (a, b):

kf(x,y) =k[fC, ] x)xy) =fxy) X g(xy),
(fg)(xy) = f(x,y)g(x,y), (i) (x,¥)

=;—E’$ if g(a,b)=0.
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Limit, Continuity of Functions of Two Variables

The conclusions indicate that arithmetic combinations of continuous functions
are also continuous —that polynomial and rational functions are continuous on

their domains.

Finally, the following result asserts that the composition of continuous functions

are also continuous. If f is continuous at (a, b) and g is continuous at f(a,b),
then the composition function (gef)(x,y) = g(f(x,y)) is continuous at (a, b)

and

oo 9T = 9 (b)),

Example 4.12 Find the limit and discuss the continuity of the function

X

hm, )01.2) J2xry

Solution:

limg, 1) 01,2 X _— _——_ =2 The function will be continuous when
+ 2wy J2()+2 2

2x +vy = 0.

Example 4.13. Using ¢ and & show that the function f(x,y) = x® — 3xy?is

continuous at origin.
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Limit, Continuity of Functions of Two Variables

Solution:

Set x = rcost and y = rsinf (8 IS fixed). Then

|f(x,v)| = r*|cos®8 — 3cosOsin?f| < 413 Take r = Jx2 +y2 < 6 = (2)5.

.'?(-'3
2

Example 4.14. Is it possible to define f(x, v) = :z at (0,0) so that f(x, y) is

X

continuous?

Solution:

Note that

2 3 2 2 2 2z
x°+y X v XX Vo l|¥
I J |{: || | || ¥yl

xZ4+92 1T xTay? w24yl xZap? xTagt

x| F | = 230t 3 yE =g

where \/x* + y*2 < dand § = 5 If we define £(0,0) = 0, f(x,y) is continuous

every where.
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Limit, Continuity of Functions of Two Variables

sinxy

Example 4.15. Show that the function Is continuous if we define

N Xy

w

£(0,0) = 0.

Solution:

Discontinuity possible only at (0,0). Note with x = rcosé and y = rsiné, from

sinxy

|sina| < |a| for small « , that | | < r; hence limit at (0,0) exists and is

".'-'I xz +:!;2

Property 1: If a function f(x,y) is defined and continuous in a closed and

bounded domain D, then there will be at least one point (x*,y*) in D such that

FOxy7) = f(x ).

And at least one point f(x,,y.) € D such that

f,y) = fx,y).
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Limit, Continuity of Functions of Two Variables

We call f(x*,y*)=M as the maximum value of the function and
f(x,,y.) = m is the minimum value of the function. This result states that a

function which is continuous on a closed and bounded domain D has a

maximum and minimum.
Property 2: If f(x,y) has both maximum and minimum M and m respectively,
let m << p << M, then 3 (x,,y,) € D such that f(x,,y,) = p.

Corollary to property 2.

If a function f(x,y) is continuous in a closed and bounded domain D and

assumes both positive and negative values, then there will be a point inside the

domain at which the f(x, y) vanishes.

Questions: Answer the following questions.

2

2
1. Find limg, 0.0y =~ If it exists.

x
x% +y

2. Show that lim,, ;) 0.0y ——o— = 0

xT+p?+1
3. Prove that lim{xJ},]_,{u]Zx - 3_}’ = —4,

: 2 2
4. F|nd lim{ny:]_,{DJD:] M

x% 42
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Limit, Continuity of Functions of Two Variables

2

5. Find lim, 0.0 - Eakil -, if it exists.

6. Test for continuity (a) f(x,y) = ry? L (b) gx,y) =

y—x2

sin™! CEJ

7. Find the lim, ;) 0,1 - ——= and discuss the continuity of the

] sin"1(%
function n  at 0,1).

+xv

8. Find the ].lm{x ¥)—(0. ﬂ:] lIllCl’ + V )

and discuss the continuity of the function _?1 In(x% + y?) at (0,0).

Example 1: Let f(x,v) =

,v) = (0,0)and f(0,0) = 0 for

(x,3) = (0,0). Is it continuous at (0,0) or can we make continuous by

redefining f(0,0)? (Hint: not possible)

Example 2: Is it possible to extend f(x,y) =

resulting function is continuous? (Hint: not possible)
Keywords: Limit, Continuity, Maximum and Minimum values.
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Module 1: Differential Calculus
Lesson 5

Partial and Total Derivatives

5.1 Introduction

Let z = f(x,y), we denote ? as the partial derivative of z with respect to x and
X

define as
% = lim f(x + Ax, J’) - f(x, }’J
dx  Ax—0 Ax

and similarly %2 _ i [&yt2)-7 )

¥y Ay-0 Ay

Example 5.1: Given z = x¥, find the partial derivative of ? and j—i

Solution:

dz _4 d=
o= yx oo =xYInx.
x v

The partial derivatives of a function of any number of variables are determined

similarly. Thus if u = f(x,v,z,t)

du . x+Ax, V2t - filx,v.at
du _ oo flrtdryzt)-flryzt)
dx Ax—D Ax
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Partial and total derivatives

du . X VE i+ AR - filx,v.at
Bu _ o fx )-fexy.zt)
at AE—D At

Informally, we say that the values of z—f and % at the point (x,,y,, Z) denote
x o

the slope of the surface in the x- and y-directions, respectively.

23
g

Example 5.2: Find the slopes of the surface given by f(x,y) = —x;— v+

at the point (23, 1,2) in the x-direction and the y-direction.

Solution:

af 1
Ltz = X1z = =3
ax '(5:1.2) (7:1.2) 2

af - _ =
oy ld12) = T2V =72

5.1.2 Differentiability for Functions of Two Variables

We begin by reviewing the concept of differentiation for functions of one

variable. We define the derivative in case of function of single variable.

Let f:D © R = R and let a be an interior point of D. Then f is differentiable at

a means
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y fla+h)—f(a)
im
h—0 h

=f'(a)

or equivalently

AR IC)
im
—a

x—=da X

=f(a)

exists. The number f'(a) is called the derivative of f at a.

Geometrically the derivative of a function at a is interpreted as the slope of the

tangent line to the graph of f at the point (a, f(a)).

Extending the definition of differentiability in its present form to functions of
two variables is not possible because the definition involves division and
dividing by a vector or by a point in two dimensional space is not possible. To
carry out the extension, an equivalent definition is developed that involves

division by a distance. The limit statement can be rewritten as

im L2 gy =0 or

=1 X —il

lim [ fl@)-x—a)f @ _

x—=a |x—al

So the following definition is equivalent to the original one.
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Let f: D € R+ R and let a be an interior point of D. Then f is differentiable at

a means there is a number, f'(a), such that

lim fx)—fla)—(x—a)f (@) _ 0.

x—=a |x—al

One way to interpret this expression is that f(x) — f(a) — (x — a)f (a) tends

to O faster than |x —a| and consequently f(x) is approximately equal to

f(a)+ (x —a)f (a)- The equation y = f(a) + (x — a)f (a) is the equation of

the line tangent to the graph of f at the point (a,f(a)). So f(x) is

approximated very well by its tangent line. This observation is the bases for

linear approximation.

Using this form of the definition as a model it is possible to construct a
definition of differentiability for functions of two variables.
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Definition 5.1. Let f:D © R* — R and let (x,,y,) be an interior point of D.

Then f is differentiable at (x,,),) means there are two numbers,

f (x0,0) = O and £, (x0,¥0) = £, such that

_ )=o) —(x—x0 ) 0-—20)30

llm{xsl":]_":xnsl’b:] o *v'll':x—xo:]z"":.,“_yo:]z

The vector
fe (0, 0)T + £, (0,007 T=(1,0), 7 = (0,1)
or
(e (X0, Yo ) fyy (%0,50))
is called the derivative of f at the point(x,,y,). Interpret this definition as
requiring that the graph of f has a tangent plane at the point (x,,v,, f (x5, Vo))

In fact it i1s easy to get an equation for this tangent plane. It is

z = f(xo, o) + (x — %) i (X0, 30) + (v — o) 5 (X0, 0)- In

f.(x,y) = aif(x, v), the same symbol x is use for two different purposes. First
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as a subscript where it denotes the variable of differentiation and second as the

first coordinate of a point in R?. Strictly speaking such a dual use of one symbol

IS improper, but this is so common as to be acceptable. In the general case, the

derivative is a vector in n space and it is computed by computing all of the first

order partial derivatives. As in the case of functions of one variable,

differentiability implies continuity.

For functions of one variable if the derivative, f(x), can be computed, then f is

differentiable at x. The corresponding assertion for functions of two variables is

false, as we know existence of partial derivative does not mean the function of

two variable is continuous. We might suspect that if f is continuous at (x,,v,)

and the first order partial derivatives exist there, then f is differentiable at

(x4, V) but that conjecture is false as the following example shows.

Example 5.1. Let f(x,y) = % if (x,7) = (0,0)and f(0,0) = 0.

o

Solution:

So if f were differentiable at (0, O)we would have that

Iim{xav:,_,{&ﬂj@:{] as f.(0,00=0 and f,(0,0)0=0. That s
2 | )

.'I xz +}?2
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XV

I":m{x,y%mmm = 0. But if the limit is computed along the path y = x, we

. x? 1
etlim,_,—=-
9 %20 502 2

The natural question to ask then is under what conditions can we conclude that
f is differentiable at (x, y). The answer is contained in the following theorem.

Theorem 5.1. Let f: D © R* ~ R and let P, be an interior point of D. Suppose
all of the first order partial derivatives of f exist in a open disk about

P, = (x4,¥,) and are continuous at F,. Then f is differentiable at P,.

Example 5.2. Show that the function f(x,v) = In(x? + y?) is differentiable
everywhere in its domain.

Solution:

The domain of f is all of R* except for the origin. We shall show that f has

continuous partial derivatives everywhere in its domain (that is, the function f

2 2

is in C*). The partial derivatives are f, =

x2 4 xZ 4

—and f, = —=—. Since each of f,

and f, is the quotient of continuous functions, the partial derivatives are
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continuous everywhere except the origin (where the denominators are zero).

Thus, f is differentiable everywhere in its domain.
We know that if a function is differentiable at a point, it has partial derivatives

there. Therefore, if any of the partial derivatives fail to exist, then the function

cannot be differentiable. This is what happens in the following example.
Example 5.3: Consider the function f(x,v) = ./x% + y2. Is it differentiable at
the origin.

Solution:

Let us find the partial derivatives if they exist at (0,0). Now

_ qien JUAX0)—F(0.0)
£ (0,0) = lim [0

. VATx+0-0 . Ax]
= lim ——— = lim —.
Ax—0 A Ax—p Ax

Since the limit does not exit so f£,.(0,0) does not exit. Similarly we can show

also £,,(0,0) does not exist. Thus f cannot be differentiable at the origin.
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In Example 5.3 the partial derivatives f, and f, did not exist at the origin and
this was sufficient to establish non differentiability there.
In the following example even if both of the partial derivatives, f,.(0,0) and

£, (0,0), exist f is not differentiable at (0, 0).

Example 5.4: Consider the function f(x,y) = x=y=. Show that the partial

derivatives £, (0,0) and £, (0,0) exist, but that f is not differentiable at (0, 0).

Solution:
Qi JCAX0)—F(0.0)
Now f.(0,0) = jlﬂlﬂ —
= lim =2 =0,
Ax—0 Ax

and similarly £, (0,0) = 0. Suppose the function is differentiable at (0,0),

_ . fley) _

l.e., Ilm{x,y]—*{ﬂ,ﬂ] Ja2 2 -
11

: : xays

That is lim s 1100y N
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If this limit exists, we get the same value no matter how x and y approach O.

Suppose we take y = x = 0. Then the limit becomes

N
li x3ya
M) =(0.0) e

2

. x32 . 1
=lim—=1lim —
x=0xVZ  x—0 .37

But this limit does not exist, since small values for x will make the fraction

arbitrarily large. Thus, this function is not differentiable at the origin, even
though the partial derivatives £,.(0,0)and f, (0,0) exist.

In summary if a function is differentiable at point, then it is continuous there.
Having both partial derivatives at a point does not guarantee that a function is

continuous there.

Theorem 5.1 : f(x,¥),g(r,s), h(r,s) € C*
= if(.g,h] = f1(g, h)g:(r,s) + f(g,h)h4(7,5)

Z£(g,h) = £.(9, M) 92(7,5) + fo(g, Wha (7, 9).
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Here subscript 1 and 2 denote the partial derivative with respect to its first and

second argument, respectively. The proof is given in Lesson 7.

5.1.2 Total Differential

Definition 5.2 (Total Differential) For a function of two variables, z = f(x, v)

If Ax and Ay are given increments and, then the corresponding increment of z is
Az = f(x + Ax,y + AY) — f(x,).

The differentials dx and dy are independent variables; that is, they can be given

any values. Then the differential dz, also called the total differential, is defined

by
dz = f.(x,y)dx + f, (x,y)dy = ? dx + j_z dy.

Example 5.5: If z = f(x,y) = x* + 3xy — y?, find the differential dz.

Further, if x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the
values of Az and dz. Which is easier to compute Az or dz?

Solution:

By definition,

dz = ? dx + j—zd}r = (2x+ 3y)dx+ (3x— 2y)dy.
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Partial and total derivatives

Putting x = 2, dx = Ax = 0.05, y = 3, and dy = Ay = —0.04, we get

dz = [2(2) + 3(3)]0.05 + [3(2) — 2(3)](—0.04) = 0.65

The increment of z is Az = f(2.05,2.96) — f(2,3)

[(2.05)% + 3(2.05)(2.96) — (2.96)2] — [22 + 3(6) — 3?]

= 0.6449

Notice that Az = dz but dz is easier to compute.

5.2 Total derivative: In the mathematical field of differential calculus, the term

total derivative has a number of closely related meanings.

The total derivative of a function, f, of several variables, e.g., t, x, y, etc., with

respect to one of its input variables, e.g., t, is different from the partial

derivative. Calculation of the total derivative of f with respect to t does not

assume that the other arguments are constant while t varies; instead, it allows

the other arguments to depend on t. The total derivative adds in these indirect

www.AgriMoon.Com



59

Partial and total derivatives

dependencies to find the overall dependency of f on t. For example, the total

derivative of f(t,x,y) with respect to ¢t is

df a8f . dfdx  Of dy
af _9f , 8rdx , ofdy
dt 8t dxdt dydt

Consider multiplying both sides of the equation by the differential dt .

The result will be the differential change df in the function f. Because f
depends on t, some of that change will be due to the partial derivative of f with
respect to t. However, some of that change will also be due to the partial
derivatives of f with respect to the variables x and y. So, the differential is
applied to the total derivatives of x and vy to find differentials dx and dy;, which

can then be used to find the contribution to df.

Example 5. 6: Find the total derivative of z = x* + \E y = sinx

Solution:
%2 _ox, E = E cosx
ax "8y 247 dx '
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Partial and total derivatives

dz 8z dz dy

dx  8x Avdx

1
= 2x+ —cosx
24y

1
= 2x + ——cosx.
24/ sinx

Questions: Answer the following questions.

1. Test the differentiability of f(x,y) = ,/y? —x?

2. Find the total differential of z = tan™* (%), (x,y) # (0,0)
¥

3. u=xz+-,z+#0

4

4, Findgatt= 0 where f(x,y) = xcosy + e*siny,x =t*+ 1,y =t* + 1t

Keywords: Partial Derivative, Differential, Total Differential
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Module 1: Differential Calculus

Lesson 6

Homogeneous Functions, Euler's Theorem

6.1 Introduction

A polynomial in x and y is said to be homogeneous if all its terms are of same

degree. For example,

f(x,y) =x% — 2xy + 3y?

IS homogeneous. It is easy to generalize the property so that functions not

polynomials can have this property.

Definition 6.1

A function f(x, y) is homogeneous of degree n in a region D iff, for (x,v) € D
and for every positive value A, f(Ax, Ay) = A" f(x, y). The number n is +ve, -
ve, or zero and need not be an integer.

Example 6.1 f(x,v) = xi}r‘gtan‘l(f} Here n=—1; D is any quadrant
without the axes.

Example 6.2 f(x,y) =3+ ln(_f)
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Homogeneous Functions, Euler's Theorem

This function is homogeneous of degree 0; D is first and third quadrant without

the axes.

2 2

Example 6.3 f(x,y) = xay = + xzy s,

This function is not homogeneous.

Theorem 6.1 [Euler's Theorem] Let f(x,y) is a homogeneous function of

degree n in R (region) and £, and f; are continuous in R. Then
fe (o y)x + f,(x,0)y = nf(x,y)
for all (x,y) € R.

Proof. Now differentiate f(Ax, Ay) = A" f(x, ) partially with respect to A, we

obtain
Chain rule : xfy (Ax, 2y) + vfo (Ax, Ay) = nA" 1 f(x, y).
Finally set A = 1.
Example 6.4 If u = sin~1 i:}; Then show that
R e

3% u .2 8% u cos2usinu

ﬂxﬂv+ ¥

4%u

2

xc—+ 2xy
dx2 Y

gy dcosu
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Homogeneous Functions, Euler's Theorem

x+

= = f(xy).
VY

VXt

Proof. Letw = sinu =

u 1S not homogeneous function , but w is

£Ox2y) Ax + Ay Alx +y) }11 X +y )llf( )
x_' J.l' = = = 2 — A2 x’}}
VAGX+y) VAGR+Y) Vi y
w 1S homogeneous function of degree é.Therefore
a—w—k} % _ 2w =Lsinu
dx dy 2
But — = cosua—u, 5, = cosu—
Hence xcosuZ® + ycosua—u = Lsinu
dx dv 2
du du 1
=}xa—|—ya=5tanu ............................. (6.1)
Differentiating (1) partially w.r.t. x , we have
ﬁzu+ﬁu+ °u 1 . du
Yoz Tax  Yaxay 2000 Yox
GPu, 0w A2, 1y
=2 ity = Geectu =1 (62
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Homogeneous Functions, Euler's Theorem

Differentiating (1) partially w.r.t. y, we have

62u+ d*u +ﬁu_ 1 2, du

Yoay2 T axay Tay 200 Yoy

A%u Jazu A 2. 4~ 0u
=X P +3 oy (2 seccu—1) oy e (6.3)

Multiplying (2) by x, (3) by y and adding, we have

62u+2 %u 3\ ,0%u
o dx? Y dx dy ) dy?

1 6u+ du
—( sec’u — ][x 3 ﬂyj

= (

1
—l J=1a
2cos?u jE2 G

cos2usinu

dcosu

—1 ¥+2y+3z=

. Then find

Example 6.5 If u = sin

x%+98 422

ﬁu+ ﬁu+ du
xﬁx }ﬂy Zﬁz
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Homogeneous Functions, Euler's Theorem

Ans.: (—7tanu).

2 2
Example 6.6 (1) If u = tan™ % , show that xz—i + }rg—z = sin 2u.

Solution:

%% +y?

¥

Here u is not a homogenous function but tanu = Is a homogenous

fucntion of degree 2

: a 8
l.e, x —(tanu) + y—(tanu) = 2tanu
dx dy

X

3 3 :
orxa—"+}ra—u = 2tanu.cos® u = sin 2u
y

+y*

@) Ifu =In ¥ showthat x 22+ y22 = 3.
dx ay

}{4
}{+}?
Solution:

u 1S not homogenous function, but e* is a homogenous function of degree 3 in

Y.

By Euler’s theorem, we have xai (e )+ yai (e ) = 3e™
X v
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Homogeneous Functions, Euler's Theorem

du

. d
e, x—+y—=3
dx dy

Questions: Answer the following questions.

1.1fu= sin‘l(m),ShOWthatx@—l—yﬁ—kza—u—FStanu =0
dx dy dz

X2 4+yS4a®

2. If=f(3) , showthatxﬁer? =0
¥

X dx
3. If =xf (3) , prove that x?+}r? =0
X X ¥

4. Ifu=sin"1=+ tan 1%, then find the value of x@+}r?
¥

¥ X dx
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Module 1: Differential Calculus

Lesson 7

Composite and Implicit Functions for Two Variables

7.1 Introduction

The chain rule works for functions of more than one variable. Consider the
function z = f(x, yv)where x = g(t)and y = h(t), and g(t) and h(t) are
differentiable with respect to t, then

dz _of dx  of dy

dt  dx dt ayde

Suppose that each argument of z = F(u, v) is a two-variable function such that
u=h(x,y) and v = g(x,v), and that these functions are all differentiable.

Then the chain rule would look like:

az . aF du aF dv
dx Y du dx dr dx

oz _orau  oFav

dv dudy avav

If we consider ¥ = (u,v) above as a vector function, we can use vector notation
to write the above equivalently as the dot product of the gradient of F and a

derivative of 7:

Partial and Total Increment: We consider a function z = f(x, v), increase the

independent variable x by Ax (keeping v fixed), then z will be increased: this
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Composite and Implicit Functions (Chain Rule) for Two Variables

increase is called the partial increment with respect to x which we denote as

A, z, so that
Az =f(x+Ax,y)— f(x, ).

Similarly we define A, z. If we increase the argument x by Ax and y by Ay, we
get z a new increment Az, which is called the total increment of z and defined

by
Az = f(x+ Ax,y + Ay) — f(x,¥).

It is noted that total increment is not equal to the sum of the partial increments,

Az # A,z + A,z Let us assume that f(x,y) has continuous partial derivatives

at the point (x,y) under consideration. Express Az in terms of partial

derivatives. To do this we have
Az = [f(x + Ax,y + Ay) — f(x, y + Ay)]

Gy +Ay) = f(x, )]
and using Lagrange mean value theorem separately

Of (xy+ay) o Ay 9 f(x.3)

dx av

Az = Ax

(where ¥ lies between y and y + Ay and X between x and x + Ax). As partial

derivatives are continuous it follows that
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Composite and Implicit Functions (Chain Rule) for Two Variables

Az = TN + DNy + ¢y + Ay,

Where the quantities ¥, (x,v) and ¥, (x,y) approach zero as Ax and Ay
approach zero.

Now we will derive the total differential of composite function.

Theorem 7.1: f(x,v),g(r,s),h(r,s) € C*
= if(g,fﬂ = flg, n)g,(r,s) + (g, h)hy(1,5)

Zf(g,h) = /(9,0 82(r,8) + fo(g, W, (7,5).

We use this formula for the composite function

fOoy),x = @(1,8),y =Y, 5)

of _ofax  of oy
ar dx Or dyv or

ﬂf_afﬂx+ﬂf3y
as dx ds gy ds

Example 71 f(x! .}J] = x}’!fl = .}JJE =X

g h = I h
55 —§f(g{:?”,.5'], {:T,S]]

=yg, +xh,y

= hg, + gh,
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Composite and Implicit Functions (Chain Rule) for Two Variables

We can generalize this results. If w = F(z,u,v,s) is a function of four

arguments z, u, v, s and each of them depends on x and y, then

aw

dx

aw
dv

. dF dz
dz dx

. aF oz
dz dvy

dF du
du dx

aF du
du dv

o

aF dr dF ds
dv dx ds dx

aF dv aF ds

dr dv ds 3_‘_1.-"

If a function z = F(x,y,u, v), where v, u, v depend on a single independent

variables x: v = f(x), u = ¢ (x), v = Y(x), then z is actually a function of one

variable x only.

Hence,

dz  OF dx aF gy
dx  dxdx v ox
aF du dF dv
Ty et SN
du dx dr dx
y aF aF dy
dx dv dx
aF du dF dv
+==4 ==
du dx dv dx

This formula is known as the formula for calculating the total derivative g (in

contrast to the partial derivative z—j)

Example 7.2: Find z and j—z of z=In(u2+v)u=e*"v,v=x24+y

Solution:
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Composite and Implicit Functions (Chain Rule) for Two Variables

dz
dx

az
dv

__ﬂzﬂu
du dx

__Bzau
du av

So

az
dx

az
dv

12 1

uZ v

2u

2z
— etV 4+

u? 4

2

21

u v

1

2 ye"ﬂ’z +

dz dv

By dx

dz dv

ﬂvﬂp'

1

2x

u? v

(ue™" + x)

1

uZ 4w

(duye™¥" 4+ 1).

In these expressions, we have to substitute e**¥* and x2 4y for w and v

respectively.

Example 7.3: Find the total derivative of z = x + [y, y = sinx

Solution:

dz dz 1 dy

— = 2X, — = —, — = C0SX
dx dy 24y dx

dz _ oz

dx  8x

azdy
av dx
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Composite and Implicit Functions (Chain Rule) for Two Variables

1
= 2x+ —cosx
24y

1
= 2x + ——cosx.
2y =inx

7.1.1 Let us find the the total differential of the composite function z = F(u, v)

and u = ¢ (x,y) and v = ¥(x, y), we know the total differential
dz = Zdx + ﬁd}f.
dx av

Now substitute the expression E and E defined in the above composite

function, after simplification we obtain

8 a
dz = Z du + Z dv.
du dv

Where du = 2 dx + 2= dy and dv = 2 dx + 2= dy

Example 7.4: Find the total differential of the composite function z = u?v?,

u = x’siny, v = x3e?.

Solution:

du = 2xsinydx + x?cosydy
dv = 3x%e¥dx + x*e¥dy

dr=2Z au+ 24
Z_ﬁu v ov v

www.AgriMoon.Com



75

Composite and Implicit Functions (Chain Rule) for Two Variables

= 2uvidu + 3u*vidv
= 2uv?(2xsinydx + x*cosydy)
+3u?v? (3x%e¥dx + xPe¥)dy
= (2uv?.2xsiny + 3u?v?.3x%e¥)dx
+(2ur*x?cosy + 3utvixie)dy

7.2 Composite and implicitly Functions:

Let some function y of x be defined by the equation F(x,y) = 0. We shall

prove the following theorem.

Theorem 7.2 Let a function y of x be defined implicitly by the equation
F(xy)=0 (7.1)

where F(x,y), z—i g—F are continuous in the domain D containing the point
v

(x, ), which satisfies (7.1), also z—i = 0 at the point (x, ). Then

Proof. Given F(x,y) is a function of two variables x, and y and v is again a
function of x so that F is a composite function of x. Its derivative with respect
toxis

oFdx  aFdy
dx dx av dx

daF dF dv
=—+===
dx dv dx
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Composite and Implicit Functions (Chain Rule) for Two Variables

As F is considered as a function of x alone, which is identically zero. So we

have

aF aF dv
—_ 3 —— =
dx av dx

i~h implies &¥ 2
which implies = _E?'

Example 7.5: An equation is given that connects x and y
el —e* +xy=0,

find &,
dx

Solution:

F(x,y) =e¥ —e™ +xy, z—i =—e* +y, 2_:: — e¥ 4+ x, by the above theorem
¥

—a®

¥ +x

L
we obtain =~ = —
dx

Questions: Answer the following questions.

df

1. Find — at t=20 where
dt

flx,y) =x*+y?, x=¢e', y= cost.

2. If z = f(x,y),

x =e*" +e %,y =e %" + 2" then show that

3. 1Y xE 4y,
du dv dx ay
. dy
4, Find - , when

f(x,y) = In(x* + y*) + tan™* G) =0.
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Composite and Implicit Functions (Chain Rule) for Two Variables

5. Find g , When x¥ +y* =a, a any

constant, x,y = 0.
Keywords: Chain Rule, Composite Function
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Module 1: Differential Calculus

Lesson 8

Derivative of Higher Order

8.1 Introduction

Derivative of higher order of composite function may be computed by the

principles given in Lesson 7. As an example, let us compute three drivatives of

order two for the functionu = f(¢(r,s),¥(r,s)). We assume that three

functions along with partial derivatives are continous upto order 3. First let us

consider the higher order partial derivatives.

8.1.1 For u = f(@(r,s),¥(r,s), we assume that the three fucntions

.0, eC*.

d

—f=f1ﬂ1+}21ﬁf1 ’Z_j=f1m2 +f2w2

d

Differentiating again, remember that f; and f, are themselves composite

functions.

ZZTT-: = flmll + Ew11+ml[fllml + flel] + wl[ﬁlml + f??lpl]

d%u
dsdr

= flmlz + ﬁw12+ﬁl[f11m2 + fleE] + wl[ﬁlﬁz + EEwE]
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Derivative of Higher Order

a—u = fi0s0 + o057, 05 [f110, + fio W ] + Yo [£5104 + foo]

We omit the arguments in these fucntions to have space. If we admit that

azu

Els Asdr

fiz = f21,04, = 0,,,1,, = P,, thenitis easily shown that

8.1.1 Higher-order partial derivatives As is true for ordinary derivatives, it is
possible to take second, third, and higher order partial derivatives of a function

of several variables, provided such derivatives exist.

8 .af

of
( ] = ﬁrx: ] = fm,r
da .a 8 .4a
E {:a_i) — fyx! ( f] .fx."l,?
It is not true in general f,,, = £,

Example 8.1 Let f(x,y) = T for (x,y) # (0,0)and f(0,0) = 0.

Solution:

We have
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Derivative of Higher Order

. fo (0+242,0)— f5,(0.0)
ﬁr;l.-‘ (0,0) = _,&TD . . :

f{i_'i 0+4y)—f(0.0)
£,(0,0) = lim TOZTE2 —
f {:ﬂx {]] — 11 f{jx,ﬂ+jy:]—f{jx,ﬂ:]

v

Ay—0 Ay

AxAy (AxZ —Ay?)

_‘l,,-l;_.o Ay (AxZ +Ay2) = Ax.
Hence
. Ax—0
foy (0,0) = lim == =1.
fx{&mi}fj—fx{&ﬂj
fx(0,0) = lim 22—
f{0+_‘kx 0)— f(0.0)
£:(0,0) = =
= lim —=0
Ax—0 Ax
. Fl0+AxAy) - F0.Ay)
0,Ay)=1
f:(0,Ay) = lim .
— lm AxAy (Ax?—Ay?) — —Av
Ax—0 Ax(Ax?+Ay7) )
So
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Derivative of Higher Order

£ (0,0) = lim =20 — 1.

Ay—-0 Ay

i.e., £,(0,0) # £,,(0,0)

8.1.2 Partial Derivatives of Higher Order (Equality of £, and f,,).

If f(x,y) possesses continuous second order partial derivatives f.,, and f,,

then

};y ::I%x

Note: Existence of partial derivatives does not ensure continuity of a function.

Example 8.2 Let f(x,y) = V). o (x,y) = (0,0)and £(0,0) = 0.

)
xZ 42

Solution:

iy J0AX0)-F(0.0)
£(0,0) = lim FE2TED — g

_ p FOA)-F(0.0)
£(0,0) = il;lyﬂ o 0

But f(x, ) is discontinuous at (0,0).
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Example 8.3 If f(x,v) = g(x)h(y), show that f,., = f

Solution:

£ (6,¥) = g D), fx = g COR()

£(63) =gCR (), foy =9 (DR ()

1.6, foy = fru-

8%z . dz gz

dxdy  ax dv

Example 8.4 If z = g(x)h(y), show that z

Solution:  We  have E =g (xX)h(y) and j—i = g(x)h (y).
azz _ r hr ,
ooy I ()R ().
So
dz d=z ' '
oy gx)h()g Oh (¥)

0%z
— dx dy
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Derivative of Higher Order

Example 8.5 Let f(x,t) = u(x + at) + v(x — at), where u and v are assumed

to have continuous second partial derivatives, show that af,,. = fi,.

Solution:

ff=u(x+at)+v(x—at),fo, =u (x+at) +v (x— at)
fi =au(x+at)—av (x—at),f,r = a’u (x+ at)

+a%v'(x — at) = a*f,,.

Questions: Answer the following questions.

8tu
ag2

L. For u = f(g(t),h(e)), find 2=,

2.Find f'(t),if f =e* siny,x =t*,y =1 — t* by not eleminating x and
.

3. Show that the functions z = ¢(x* - y?), where ¢(u) is a differentiable function,

satisfies the relationship y@+ % =0.
ox oy

4. Find the derivatives g_y of the functions represented implicitly
X

2 2 2
(i)sin(xy) —e” —x*y =0 (i) xe’ + ye* —e” =0 (jii) y* = x” (iv)x*+y3 =a?

5. If r=x¢(x+y)+yw(x+y), show that
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Derivative of Higher Order

2 2 2
0T 07,07y
OX Ooxoy oy

(¢ and y are twice differentiable function.)

6. If u= %[¢(ax+ y) +#(ax—y)], show that

Pu_at of
oty oy’ ay)
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Module 1: Differential Calculus

Lesson 9

Taylor's expansion for function of two variables

9.1 Introduction

Let z = f(x, y) which is continuous, together with all its partial derivatives up
to (n + 1)-th order inclusive, in some neighborhood of a point (a, b). Then like
a function of single variable we can represent f(x, y) as sum of an n-th degree
polynomial in power of (x — a) and (y — b) and some remainder. We consider
here in case n = 2 and show that f(x, y) has of the form

f(x,y) =4, +D(x—a)+E(y—b)

1
+5[A(x— ) +2B(x—a)(y—b)+ C(y—b)*]+R, (1)
where A4,,D,E, A, B, C are independent of x and y, and R, is the remainder, and
it is very similar to function of single variable.

Let us apply the Taylor formula for function f(x, y) of the variable y assuming

x to be constant.

f(xy) = f(x,b) + 221, (x,b)
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Taylor's Expansion for Function of Two Variables

{1: b] {v b]

fvv( bj+ fvvv(x ??1] (2]

where n, =b+6,(y—b), 0 <6, <1 We expand the functions f(x,b),

fy(x, b), £, (x,b) ina Taylor's series in powers of (x — a)
Feub) = fla,b) +——f.(@b)

Ml (x — @)
fer(@, b) + =

fexx(§1,0)  (3)

where &, =x+6,(x—a),0<6,<1
X—a
fv(bej = fy(albj +Tfyx(a!b]

(1’— a)’

fvxx (521 b) (421

where &, =x +65(x—a), 0<6; <1

foy (%, 0) = fyy, (a,b) +2 2 fwx ($s,0) (5)

where & = x + 8,(x—a), 0 < 8, < 1. Substituting expression (3), (4) and (5)

into formula (2), we get
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Taylor's Expansion for Function of Two Variables

X—a

1

oY) = f(ab) +=2f.(a,b) + 2L f, (a,b)

(x—a)®

1.2.3

_|_

frn (G2, 0) + 22 £, (@, b) + 2 £, (a,b)

(y—b)*
1.2

+ D G )]+ R, (a,h)

x—a
1

fyyx (531 bj] + ':J"_b:]a fyyy (X, ”1)1

1.2.3

_|_

arranging the numbers as given in (1), we have

fxy) =f(a,b) + (x—a)f(a,b) + (y — b)fy(a,b)
+i [(x — a)*fix(a, b) + 2(x — @) (y — b) fiy (@, D)
+(y = b fiy(a, )] + i[(?’f — @) frxf (§1, D)
+3(x — @) (¥ = b) frxy (§2,0) +3(x — @) (¥ — b)* 1y, ($5, D)

(}’ - bjafvyy (avnlj]

This is the Taylor's formula for n = 2. The expression
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Taylor's Expansion for Function of Two Variables

1
Ry =[x = ) fux (§1,0) +30x = @)* (v = b) fry (82, b)

+3(x — a)(y — b)* foyy(§3, ) + (v — B)* fiy (@,11)].

oo

This is called the remainder. If we denote x —a =Ax, y—b = Ay, and

Ap = \/(Ax)? + (AY)?, R, becomes

Ax? Ay

= [ ﬁfxx(fl!bj + 3 fmv@zrb]

_‘kx_".v

fxvv (f&!b] + fvvv(a 'ﬂ'l]]ﬂﬁ

Example 9.1: Find the remainder R, of the function given by

f(x,y) = sinxsiny about (0,0)

Solution:

& y) = f(0,0) + [x£:(0,0) + y£,(0,0)]

+ = [ £ (0,0) + 2%y£,,(0,0) + ¥ £,(0,0)] + R,.

Where R, is given by
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Taylor's Expansion for Function of Two Variables

1
Ry =31 = @)* frxnf (§1, D) +3(x — @)* (V = D) frxy (52, D)
+3(x — ) (Y — b)*foyy (§3,0) + (v — b)* £ (@)

oo

L (x,y) = cosxsiny,fy (x, v) = sinxcosy,

fexe (X, ) = —sinxsiny, f, (x, y) = cosxcosy,

fry (x,¥) = —sinxsiny, f,.,. (x, y) = cosxcosy,
fexx = —cCOsSXSINY, f,.,,, = —sinxcosy,
feyy = —cosxsiny, f,.,, = —sinxcosy

Ry == [0+ 3x2y(—sin(x+ 6;x))]

=— i [xZysin(x + 0:%)]

Questions: Answer the following question.
1. Expand z =sinxsiny in powers of (x—%) and (y—%). Find the terms of
the first and second orders and R, (the remainder of second order).
2. Let fOxy)=e'siny Eypand F(X+hy+k) jn powers of h and k and also find

R,
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Taylor's Expansion for Function of Two Variables

3. Expand XY *siny+€" in nowers of (*=1) and (Y-7) through quadratic terms

and write the remainder.
4. Expand x*-2xy? in Taylor’s Theorem about a=1, b=-1.

5. Show that for 0<6@<1,

e sinby = by + abxy + %[(a‘?x3 —3ab*xy®)sin(bé&y) + (3a*bx*y —b*y*) cos(b &y)1e**.

Keywords: Taylor’s polynomial
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Module 1: Differential Calculus

Lesson 10

Maximum and Minimum of function of two variables

10.1 Introduction

We say that a function z = f(x, y) has a maximum (local) at a point (x,,v,) if

f(xo,¥0) =2 F(,y)

for all points (x, y) sufficiently close to the point (x,, ;).

A function of two variables has a absolute maximum (global maximum) at a

point (x,,v,) If f(xy,3,) = f(x,v) for all points (x,y) on the domain of the

function.

Analogously we say that a function z = f(x,v) has a minimum (local) at a

point (x,,v,) if

f(x0,0) = f(,¥)

for all points (x, y) sufficiently close to the point (x,,v,). Similarly we define

absolute minimum (global minimum).
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Maximum and Minimum of Function of Two Variables

The maximum and minimum of a function are called extrema of the function;
we say that a function has an extremum of a given point if it has a maximum or
minimum at the given points.

Example 10.1. The function z = (x — 1)? + (y — 2)* — 1 contains a minimum
atx =1,y =2.

Solution: As f(1,2)=—-1<f(x,y) for all x+#1 and y=+#1 ie,
fxy) = f(1,2)=-1

Example 10.2 The function z = > — sin(x* + y2)

Solution:

For x =0, § =0, £(0,0) = Now for 0 < x?+y2 <%, sin(x* +y?) > 0.
So £(0,0) > f(x,y), 0 <x2+y? < 5 i.e, x =0, y =0 isamaximum point
of z.

Necessary Conditions for an Extremun: If a function z = f(x, y) attains an
extremum at x = x, and y = yj, then each first partial derivative (1., £;,)|(x,.3)

either vanishes for these values or does not exist.
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Maximum and Minimum of Function of Two Variables

This result is not sufficient for investigating the extreme points, but permits
finding these values for cases in which we are sure of the existence of a

maximum or minimum. Otherwise more investigation is required.

Example 10.3. Consider the function z = x* — y?

Solution:

The function has partial derivatives as ? = 2x, :—i= —2vy which vanish at
X o

x =0 and y = 0. But this function has neither maximum nor minimum at

x =0 and y = 0, since it takes both negative and positive values. Points at

which ? = 0 (or does not exist) g—i = 0 (or does not exist) are called critical
X o

points of the function z = f(x, y). Thus if a function has an extreme point this
can occur at the critical point. Converse may not true.

For investigation of a function at critical points, let us establish sufficient
conditions for the maximum of a function of two variables, which can be
generalized to functions of more than two variables also.

Theorem 10.1: Let a function f have continuous second partial derivatives on

an open region containing a point (a, b) for which f, |, »y =0and £, | ;5 = 0.

Let
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Maximum and Minimum of Function of Two Variables

d = fx(a,D)fyy (@,b) = [fiy (a, D))’

or

fex  Fey
d=\lx Iw|

(a.b)

[ fey = [y @s fhas 2nd order continous partial derivatives |

1.1fd > 0and £, (a,b) > 0, then f has a local minimum at (a, b).

2.1fd > 0and £, (a,b) < 0, then f has a local maximum at (a, b).

3. If d < 0, then f has neither a local minimum nor a local maximum at (a, b).

4. The test is inconclusive if d = 0. (Additional investigation is required)

Proof follows from Taylor's theorem.
Note that if d =0, then £ (a,b) and f,, (a,b) must have same sign. This

means that f,., (a, b) can be replaced by f,,, (a, D).

Example 10.4 Find the extreme point of

flx,y)=—x*+4xy—2y*+1
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Maximum and Minimum of Function of Two Variables

Solution:

ﬂ=—3x2+4;}f=ﬂ,£=4x—43’=0*

dx
solving we obtain x = y. i.e., 3x* —4x =0 or x(3x—4) = 0. So (0,0) and

(2,2) are the critical points. f,, = —6x, f,,, = =4, fi,, = 4.

d = £x(0,0)£,,(0,0) — [£, (0,0)]* =016 < 0.

I.e., f has neither minimum nor maximum at critical point (0,0). Hence (0,0) is

a saddle point. We will consider the critical point (g, gj

d =Fx G D oD — [y (12

24
=-5 (-9-16=16>0,

and £, GE) = —8 < 0, we conclude that f(x,y) has a maximum at GE)
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Module 1: Differential Calculus

Lesson 11

Lagrange's Multiplier Rule / Constrained Optimization

11.1 Introduction

We presents an introduction to optimization problems that involve finding a

maximum or a minimum value of an objective function f(x, y) subject to a

constraint of the form g(x,y) = k.

Maximum and Minimum. Finding optimum values of the function f(x,y)

without a constraint is a well known problem in calculus. One would normally use

the gradient to find critical points (gradient (Vf) vanishes). Then check all

stationary and boundary points to find optimum values.

Example 1.Vf = %,%

fooy) =2x"+y% fi(x,y) =4x=0,£,(x,y) = 2y =0, f(x, )

has a critical/ stationary point at (0,0).
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Lagrange's Multiplier Rule / Constrained Optimization

The Hessian: A common method of determining whether or not a function has an
extreme value at a stationary point is to evaluate the hessian of the function of

n variables at that point. where the hessian is defined as

acf aef azf
dxy dxy Gxy - dxy By
a2 f Bz f azf
Hl:f) — ?xz 8y ?-“22 r:f‘xz dign
azf azf azf
Bxndx, Oxndx,  Bxn? /

A square matrix of order nxn is said to be positive definite if its leading principal

minors are all positive.

For n=2, we have

JOE Sa At

dx* dxady
H(f) =

dydx dy?

Second Derivative Test: The Second derivative test determines the optimality of

stationary point x according to the following rules:

2 2 2
Let 0 ]: =A, of =B, 0 ]: =C, and ﬂ=ﬂ:0 at the point (x,y), then
OX OXoy oy ox oy
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Lagrange's Multiplier Rule / Constrained Optimization

1. If A>0 and AC-B*>0 at the point

(%Y) then T has alocal minimum at %¥).
2. If A<O and AC-B?>0 at the point

(%Y) then T has a local maximum at (%¥)
3, If AC-B?<0at *Y) then (X¥) isa

saddle point of f.
4, If AC-B?=0, further investigation is

j 3)

Therefore f(x,y) has a minimum at (0,0) as 4 = 0 and determinant of the matrix

required.

In the above Example 1,

is8 =0.

11.1.1 Constrained Maximum and Minimum

When finding the extreme values of f(x, y) subject to a constraint g(x, y) = k, the

stationary points found above will not work. This new problem can be thought of

as finding extreme values of f(x,y) when the point (x, y) is restricted to lie on the
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Lagrange's Multiplier Rule / Constrained Optimization

surface g(x,y) = k. The value of f(x,y) is maximized (minimized) when the

surfaces touch each other,i.e , they have a common tangent for line.

This means that the surfaces, gradient vectors at that point are parallel, hence,

Vi, y) = Vg (x,y)

The number A in the equation is known as the Lagrange multiplier.

11.2 Lagrange multiplier method

The Lagrange multiplier methods solves the constrained optimization problem by

transforming it into a non-constrained optimization problem of the form:

Lx,y,A) = f(xy) + Ak — g(x,y))

or (g —k)). Then finding the gradient and Hessian as was done above will

determine any optimum values of L(x,y, 1) .

Suppose we want to find optimum values for the following:

Example 11.2: f(x,v) = 2x* + y? subjectto x +y = 1.

Then the Lagrangian method will result in a non-constrained function.
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Lagrange's Multiplier Rule / Constrained Optimization

L(x,y,A) = 2x* + y* + A(1 — x — v). The gradient for this new function is

% 4x—21=0
dx

aL

o =2y—2=0
dL
a=1—x—y={]

Solving x,y, A, we obtain x = i y = %and A= g

The Hessian matrix at the stationary point
4 0 -1

0 |

ANy TN

Since  H(L)is positive definitethe ~ solution ~x ==,y == minimizes

f(x,v) = 2x? + y? subject to x + y = 1 with f'%é] =§

Example 11.3: Find the rectangle of parameter | which has maximum area i.e.,

Maximize xy subject to
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Lagrange's Multiplier Rule / Constrained Optimization

2(x+y)=1

Solution:

Lix,yv,A) =xy+22(x +v) = D).

Z—y+21=0

Z—x+21=0

v

ie,x=y=-22 ie,—8i=1=>A=—-.

X =¥= i , SO that the rectangule of maximum area is a square.

Example 11.4 Find the shortest distance from the point (1,0) to the parabola
y* = 4x, i.e., Minimize (x — 1) + y? subject to y* = 4x.

L(x,y,2) = (x —1)*+ y? + A(y? — 4x)

aL_Z( 1)—44=10 aL—Z + 24y=10
ax - ay > Y=

y*—4x=0
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Lagrange's Multiplier Rule / Constrained Optimization

Now 2y + 24y =0 =2y=00rdA=—-1

IfA=-—1,thenx =—1,from2(x—1)—44A=10

Hencey=0 = x =10

x=-—1

Now y2 = 4" y? = —4,s0y = +—4 not possible no real value.
Hencey = 0,x =0,

. 1
e, A=—-
2

Hence the only solutionis x = 0,y = 0,4 = —i and the required distance is unity.

Questions: Answer the following question

1. Determine the maximum value of the n-th root of a product of numbers
X1,X5,-,X, provided that their sum is equal to a given number a. Thus the

problem is stated as follows: it is required to find the maximum of the function

Z = 1 /X4.%5 -, X, SUbject to X7, x;, —a =0, x; > 0, forall i.
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Module 1: Differential Calculus

Lesson 12

Convexity, Concavity and Points of Inflexion

12.1 Introduction

In the plane, we consider a curve y = f(x), which is the graph of a single-

valued differentiable function f(x).

Definition 12.1: We say that the curve is convex downward bending up on the

interval (b, ¢) if all points of the curve lie above the tangent at any point on the

interval. Or when the curve turns anti-clock wise we call it is convex downward

(concave upward) (see Fig. 1).

Aboy

Fig.1. (Convex downward/Bending up)

Definition: We say that a curve is convex upwards for bending down on the

interval (a, b) if all points of the curve lie below the tangent at any point on the

interval. Or when the curve turns clock-wise we say it is convex upward

(concave downward) (see Fig. 2).
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Convexity, Concavity and Points of Inflexion

2

Fig. 2. (Convex upward / Bending down )

The curve has a point of inflexion at P, at which the curve changes from convex

upwards to convex downwards and vice-versa.

Theorem 1: If for all points of an interval (a,b), f'(x) <0, the curve

y = f(x) on this interval is convex upward. If f"(x) = 0, the curve is convex

downward.

If F'(x)<0Vxe(ab)=1y=f(x)isconvex upward on (a, b).

If f(x)>0Vxe€(ab)=y= f(x)isconvex doward on (a, b).
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Convexity, Concavity and Points of Inflexion

Fig. 3. (Inflexion point)

Example 12.1: Find the ranges of values of x for which the curve

y=x*—6x*+12x*+5x+7 is convex downwards, convex upwards, and

also determine the point of inflection.

Solution:

y =4x% —18x% + 24x + 5,

JJ'”: 12x? —36x + 24 = 12{:1?_ lj(x_ 2)

Now on the interval (—w=,1), x—1<0, x—2<0, hence y" > 0. If x > 2,

x>1,ie,x—2>0and x—1> 0. Hence for x € (2,), ¥" = 0. Now on

the interval (1,2), y" < 0. Hence the curve is convex downward on the interval

(—=,1) and (2,0). Convex upwards on (1,2). The curve has inflection points

at =1and x =2as y" changessign. At x =1, y=19and at x = 2, y = 33.

l.e., (1,19)and (2,33) are two points of inflection of the curve.
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Convexity, Concavity and Points of Inflexion

Example 12.2: Determine the intervals where the graph of the function is

convex downward and convex upward of f(x) = %
e

Solution:

fO) =[x =2 +3/2(x— D] == {1+ [1/2x— D]}

Hence,

1
(2x-1)2

) =$[—1f(2x— 1)%]2=—

Then f'(x)=4/(2x—1)3 For x > i, 2x—1>0, f'(x) =0, the graph is
convex downward. For x ::::i, 2x—1 <0, f'(x) <0, the graph is convex

upward. There is no inflection point, since f(x) is not defined when x = 1/2.
Example 12.3: Determine the intervals where the graph of the function is
convex downward and convex upward of f(x) = 5x* — x5,

Solution:

f(x)=20x3-5x* and f'(x)=60x%—20x*=20x*(3—x). So, for
0<x<3 and for x<0, 3—x>0, f (x)>0, the graph is convex

downward. For x >3, 3— x < 0, f (x) < 0, and the graph is convex upward.
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Convexity, Concavity and Points of Inflexion

There is an inflection point at (3,162). There is no inflection point at x = 0, the

graph is convex downward for x < 3.

Example 12.4: Find the point of inflection of the curve y = (Inx)?,

Solution:

"o 3lnx

y(x) = 3(1nx]z.i, y =—(@2—-x) y =0 if Inx=0, or Inx =2. i.e,
x =1 or x =e*. Now y" changes sign from negative to positive as x passes
through 1 and changes sign from positive to negative as x passes through e®.
Thus (1,0) and (e?,8) are two points of inflection of the given curve.

Example 12.5: What conditions must the coefficients a, b, ¢ satisfy for the

curve y = ax* + bx? + cx* + dx + e to have points of inflection?

Solution:

y =12ax®+6bx +2c has a point of inflection iff the equation
2ax?+6bx+2c=0 has different real roots. i.e., discriminant

D = 9b* — 24ac > 0 is positive. i.e. 3b* > 8ac.
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Convexity, Concavity and Points of Inflexion

Questions: Answer the following questions.

1. Determine all the inflexion points of sin x.

2. Determine all the inflexion points of cos x.

3. Determine all the inflexion points of f(x) = tan x for —g <x< g

4. Sketch the curvey = sin*x . Determine the inflexion points. Compare with
graph of |sin x|.

5. Determine the inflexion points and the intervals of convex downward /

bending up and convex upward / bending down for the following curve

6. y=x +:_t
[£ AN 2T 41
8. y = =

9. Sketch the curve y = é (x® —6x*+9x+6)

10.Pint of inflexion of y = x* .

Keywords: Convex up, Convex down, Inflexion Point.
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Module 1: Differential Calculus

Lesson 13

Curvature

13.1 Introduction

Curvature measures the extent to which a curve is not contained in a straight line.
It curvature measures how curved the curve is. We have heard the comparison of
bending or curvature of a road at two of its points. The curvature of a straight line
Is zero. It also measures how fast the tangent vector turns as a point moves along

the curve.

Q
AS

@ [+ 1ep

Fig.1.

Let A be a fixed point on the curve. Let arc AP = s, and arc AQ = s + As, so that
arc PQ = As. Let ¢, ¢ + Ag be the angles which the tangents at P and @ make
with some fixed line (say x- axis). A¢ denotes the angle formed by these tangents.
The symbol Ag also denotes the angle through which the tangent turns from P and
@ through a distance As. Ag will be large or small, as compared with As,
depending the degree of the sharpness of the bend. This suggests the following

definitions:
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Curvature

d¢
=11

The curvature of the curve at P is defined as lim,_, | % | i

The reciprocal of curvature p = % IS the radius of curvature.

Length of Arc as a Function, Derivative of Arc.

Let v = f(x) be the equation of a given curve on which we take a fixed point A.
Let P(x,y) and Q(x + Ax, y + Ay) be the variable points on the curve with arc
AP =sand arc AQ = s+ Asso thatarc PQ = As.

Q

A Ay

S P AX N
Fig. 2.

chordPQ? = PN? + NQ? = Ax? + Ay?

=
chord PQ. 2 _ ﬂ___"lf 2
(: Ax ] =1+ I:.-'_"n.:x:]
=
chord PQ -5 Asyz _ .-'_"n._”v 7
[ are PQ ] (ix) 1+ (ﬂx]
limlz,_,,t.M = 1, taking limit lim,_, » both sides we have
arc PQ

=1+
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Curvature

=
ds dy

— = [14+()?
dx (dxj

Radius of Curvature: Cartesian Equations

We define the absolute value of % as the curvature and denote it by x = |§|.

Consider the curve y = f(x), we note that tang = g and, therefore,

- -1 8y
¢ = tan* ()
Differentiating this with respect to x, we have

dZy
d¢ F daZ
dx 1+{d—aj“f )2

AsE = 14 (2)2 we have
dax dx

dZy
a0 L5 dZy
ki ALY =2y
9 _ax_ 1HEDY L dxe
s = dy 4¥.2.3
de 14?7 DGR
2 2 dZ
ds 1+ z d. v
Hence p = | 22| = S22 where y, =2, y, =2
de Y2 doc dx?

2

Note: If p = %, the radius of curvature, p, is positive or negative according as E

IS +ve or -ve i.e., accordingly as the curve is convex downward or convex upward.
But we consider p is +ve here. Curvature is zero at point of inflection. Since p is
independent of the choice of x-axis and y-axis, interchanging x and v, we see that

p, is given by
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dx. o 2
1+ T2
125
dy?

Curvature- parametric Equation
Givenx = f(t), y =F(t). f'(t) = 0.

dy Fl@&) d%y B FE -

dx (&) dx? If'12

|f’F”—F’f”| H=E

Hence the curvature ¥ = 2
e 99

Curvature- polar Equation

Let = f(8) be the given curve in polar co-ordinates. Now its cartesian
coordinates are of the form x =7cosf, y =rsinf. ie., x = f(f)cosé,
v = f(#)sinf. Now

dx d ) dr )
& _ 4 os8 — f(@)sinf = — cos@ — rsind
dg  dé de

and

dy ar. |
— = —ginf + rcosf
dg  de
d2x dZr dr .
= cosf — 2 —sinf — rcos@
dgz 4z da
d% v d¥r . dr )
— = sinf + 2— cosf — rsinf
dgz 4@z da

substituting the latter expressions in the previous parametric-form, we have

|T2+2T’Z—'r:r'” |

o =
(rZ+r' )2

We know
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B fE—F F
- El

()2 +(F")2 12

K

numerator becomes
(r''sinf@ + 2r'cosf@ — rsinf) X (r'cosf — rsinf)
—(r'sinf + rcos@) X (r''cosf — 2r'sinf — rcosh)
= r"r'sinfcosd + 2r'*cos?6 — rr'sinfcosl
—rr''sin’8 — 2rr'sinfcosd + r*sin?8
—r'r""sinfcos@ + 2r' *sin?6 + rr'sinfcosd
—rr' cos?8 + 2rr'sinfcosd + r*cos? 0
= 1r2(sin?6 + cos?@) + 277 (cos?6 + sin6)

—rr" (8in®8 + cos?8)

To check we can observe that
[f'F' —Ff"=r2+2r"" —rr"
denominator becomes
(r'cosf — rsin@)? + (r'sind + rcosf)?
= 7'*cos?0 + r2sin?@ — 2r7'sinfcosl
r'%sin?0 + r2cos?@ + 2rr'sinfcosd

= 1'% (cos?0 + sin?6) + r2(sin?8 + cos20)

2

[I:fr)z + EFJ)E]E — (TJQ +T2)E

Hence

116

www.AgriMoon.Com



Curvature

2
_rEear’ T -

Z
(rZ+r' z:]2

The radius of curvature is

{TZ +r 2 ]%
p=

o |r2+2r! p— |

Example 1: Determine the radius of curvature of the curve r = a8 (a = 0)

Solution:

dr d2r

ar _ =0

de a dez

Hence

3 2

_ (a*f*+a®)z  a(f®+1)z
B 0000 45 W02 B

* We know

F =FF f o
Tl

K F
[(f' 2 +(F)?]2

numerator becomes
(r''sinf + 2r'cosf — rsinf) X (r'cosf — rsinf)
—(r'sinf + rcos@) X (r''cosf — 2r'sinf — rcosh)
= r'"r'sinfcosf + 2r'*cos?6 — rr'sinbcosd
—rr''sin?8 — 2rr'sinfcosf + rZsin’f

. 2 . .
—r'r""sinfcosf + 2r' “sin?@ + rr'sinfBcosfh
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—rr' cos?@ + 2rr'sinfcosd + rcos? o
= r2(sin?6 + cos?8) + 21’ (cos?6 + sin?6)
—rr' (sin’6 + cos?@)
=|r2+2r7 —rr"|
denominator becomes
(r'cosf — rsinf)? + (r'sind + rcosf)?
= 7'*cos?0 + r2sin?@ — 2r7'sinfcosh
r'%sin20 + r?cos?@ + 2rr'sinfcosd

= 1'% (cos?0 + sin?6) + r2(sin?8 + cos20)

Hence

Example 2: Find the radius of curvature of r = aseczg

g
Ans.: p = 2asec3;

Example : Find the radius of curvature of x = 3t% vy =3t —t3fort =1,

Ans.:.p=6

Example : Find the curvature of the hyperbola xy = 1 at (1,1).

Solution:
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| A p— ==
) —and ) . S0

por-3 2z x® 2x

K==E—— = — —]

! 3 E] E]
[1+Gz ¥ 1)z (x*+1)2

2

Whenx = 1, k = —= =
242

Y

<
m|m-|

Example 3: For what value of x is the radius of curvature of y = e* smallest?

Solution:

2
(1+e2™)z
e*

& . .
y'=y"=€% K= z and radius of curvature p is

(1+e2%)2

. Then

1 2
dp _ &% 2 (1+62%)2 (262%)—6" (1+67%)2

dax g2 ¥

¥ ( 1+32‘r]?i. [3 32""'-—{ 1+32‘r]]
ar

1
_ (1+e®V)z(26%-1)
I e

etting g =0, we find 2e?* =1, 2x = lni =—In2, x = —%. As the second

(In2)

derivative at this point is positive, x = - Is the point which gives the smallest

radius of curvature.
Example 4: Find the radius of curvature at any point on the curves: y = ccoshf

Solution:

. x 1 . x 1 x
v’ = ¢sinh=.- = sinh—, y"" = -cosh-
& ¢ c

c c
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.3 E
_ [1+(3% _ [1+sinh?2]2

|d23’| lcoshs
Az £ £
Lx 2
(cosh®=)z
=4t = cct:-sh2
—ccsh—
£ £

y? = c2cosh?Z
c
implies

X
= ccosh®=

(Y |"~"-

2

v
c

Example : Find the radius of curvature at the origin of the curve

y—x=x%+ 2xy+y?
Solution:

D= 2x 4 2224 2y + 292

dy .
= e |{ﬂ,u] =1

dZ

—_ —_ 2 F—
L=2+22 zﬁI +22 42 )+m

which |mpI|es |{D 0 = 8.

Example 5: Find the curvature of the cycloid x = a(t — sint), y = a(1 — cost) at

an arbitrary point (x, y).
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Solution:
dx _ 1 t dx asint, 2 = asi t ey _ acost. Using this
dt a( cost), dez g asmb e T ' 9
; .’F.’.’_FJ' rr .
parametric formula x = L2571 \we obtain

[(F )2 +(F')?]2

__ |a{i—cost)acost—asint.asint|
= F]
[a®{1-cost)® +a®sin®t]z

_ |a® (cost—cos® t—sin® t))

[2a? {l—ccst:]]%

|cost—1]|

g &
2za(l—cost)z

1 1

B E I | iasint
22a(1-cost)z  |4asing]

Whent =, k ==
|4al

Questions: Answer the following questions.
1. Find the curvature of the curve b?x? + a?y* = a®h? at the point (a,b) and (a,0)

2. Find the curvature of the curve 16y? = 4x* — x® at the point (2,0)

3. Find the curvatur e of the curve xy = 12 at the point (3,4)

Questions: Find the radius of curvature of the following curves at the

indicated points.
4.y = x* at the point (4,8)
5.x ? = 4ay at the point (0,0)

6. v = Iln x at the point (1,0)
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7. y = sin x at the point G 1)

8. Find the point of the curve y = e* at which the radius of curvature is minimum.

Ans:1 2 25 13 2%, 2005 996 292,7.1&8. —2m2,
a?’ hZ p 125 3 2 2
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Module 1: Differential Calculus

Lesson 14

Asymptotes

14.1 Introduction

A straight line d is called an asymptote to a curve C (fig.1), if the distance &

distance from a point P of C to d approaches to zero as P recedes to infinity.

Roughly speaking, a straight line is said to be an asymptote of a curve if it comes

arbitrary close to that curve (but never touches the curve).

14.1.1 Asymptotes of Functions: If the graph of a function has an asymptote d,

then we say that the function has an asymptote d. A function can have more than

one asymptote. If an asymptote is parallel with the y-axis, we call it a vertical

asymptote. If an asymptote is parallel with the x-axis,

we call it a horizontal asymptote. All other asymptotes are oblique asymptotes.

123 www.AgriMoon.Com



Asymptotes

(X, Y)

o
S,

Fig. 1

Vertical Asymptotes

A straight line x = a is a vertical asymptote to the the curve y = f(x) if

lim,_,+f(x) = £« or lim,_,-f(x) = t«. Consequently, to find vertical

asymptotes one has to find values of x = a such that when they are approached by

the function y = f(x), the latter approaches infinity. Then the straight line is a

vertical asymptote.

Example 14.1: The curve y = 2_has a vertical asymptote x = 5, since y — = as

x—3

x — 5t
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Example 14.2: The curve y = tanx has infinite number of vertical asymptotes at

X = ?forn =1,3,5,---, as tanx — «« when x — i?.

Example 14.3: The curve y = 2**2 has no vertical asymptote at x = —2 as

x+2

x2+3x+2__

= —1.

lim
x=—2 49

14.2 Horizontal Asymptotes

A line y = b is a horizontal asymptote of a function f(x) iff lim,_..f(x)= bor

lim,__.f(x) = b, with b €R.

3x—4x=1

Examples 14.4: The curve y = e has horizontal asymptote as
x% —dx— - - - x% —dx—
lim,._,.. 22t _ 2 9o, V= Zis a horizontal asymptote of the function S
6x%—6 2 2 6x2—6

14.3 Obligue Asymptotes/Inclined Asymptotes

Let the curve y = f(x) have an inclined or oblique asymptote d(fig.1) whose

equation is y = mx + c.
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Here m and ¢ are unknown real numbers to be determined. Let PM = & be the

perpendicular distance of any point P(x,y) on the curve to the line y = mx + c.

Hence, § = X—"-° Now & — 0 as x — w«. Hence, lim,__[y —mx—¢]=0. i.e.,
Yi+m?2 x Y

lim,_ [y —mx] = ¢, hence

lim[£ —m] = lim [y — mx].lim =

x—oo X x—oo X

c.0=0.

Som = lim,_..

2 |

x*+2x—1

Example 14.5: Find the asymptotes to the curve y =

X

Solution:

When x = 07, y = 4+, and x — 0%, y — —ao, hence the straight line x =0 is a

vertical asymptote of the above curve.
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Next to find the asymptotes of the form y = mx + ¢, i.e., the inclined asymptote.

2 +2x—-1
z

. ¥ .
m = lim == lim

xr—oo X r—o0 X

=lim[l1+-—=]=1

¢ =lim[y —mx] = lim[y— x]

xZ+2x—1

=1

—x] =lim[2—3] = 2.

Hence y = x + 2 is an inclined asymptotes to the given curve.

Example 14.6: Find the oblique asymptotes to the curve y = yx2 —1 4+ 2

Solution:

y=—x+2

14.3.1 Tutorial Discussion

e An asymptote is a straight line which acts as a boundary for the graph of a

function.
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e When a function has an asymptote (and not all functions have them) the
function gets closer and closer to the asymptote as the input value to the

function approaches either a specific value a or positive or negative infinity.
e The functions most likely to have asymptotes are rational functions

e Vertical asymptotes occur when the following condition is met:

The denominator of the simplified rational function is equal to 0.

Remember, the simplified rational function has cancelled any factors common to

both the numerator and denominator.

2—5x

e.g., Given the function f(x) = ——

The first step is to cancel any factors common to both numerator and denominator.

In this case there are none.
The second step is to see where the denominator of the simplified function equals

0.2+ 2x =0implies x = —1.

The vertical line x = —1 is the only vertical asymptote for the function. As the

input value x to this function gets closer and closer to -1 the function itself looks

and acts more and more like the vertical line x = —1.
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2x +10x+12

Example 14.7 f(x) = —
First simplify the function. Factor both numerator and denominator and cancel any

common factors.

2x®+10x+12  (x+3)(2x+4)  2x+4
x2%—g (x+3)(x—3) x—3

fx) =

The asymptote(s) occur where the simplified denominator equals 0. i.e., x — 3 = 0.

The vertical line x = 3 is the only vertical asymptote for this function. As the input

value x to this function gets closer and closer to 3 the function itself looks more

and more like the vertical line x = 3.

xX—=2a

Example 14.8 If g(x) =

xT—x—86

Factor both the numerator and denominator and cancel any common factors.

In this case there are no common factors to cancel.
x—=5 x—5

x?—x—6 - (x+2)(x-3)
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The denominator equals zero whenever either x + 2 = 0 or x — 3 = 0. Hence this

function has two vertical asymptotes, one at x = —2 and the other at x = 3.

5. Horizontal Asymptotes

Horizontal asymptotes occur when either one of the following conditions is met

(you should notice that both conditions cannot be true for the same function).

e The degree of the numerator is less than the degree of the denominator. In this

case the asymptote is the horizontal line y = 0.
e The degree of the numerator is equal to the degree of the denominator. In this
case the asymptote is the horizontal line y =§ where a is the leading

coefficient in the numerator and b is the leading coefficient in the denominator.

When the degree of the numerator is greater than the degree of the denominator

there is no horizontal asymptote.

x®—3x+5

xT-27

Example 14.9 f(x) =

then there is a horizontal asymptote at the line y = 0 because the degree of the

numerator 2 is less than the degree of the denominator 3.
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This means that as x gets larger and larger in both the positive and negative
directions (x — o) and (x — —o0) the function itself looks more and more like the

horizontal line y = 0

Find the vertical asymptotes, horizontal asymptotes and inclined asymptotes for
each of the following functions Problems:

Exercises:

Find the asymptotes of the following curves:

x%4+2x-15

Lfto=

x2+7x+10

Solution: Vertical: x = —2 Horizontal: y = 1 Inclined: none

2 g(xj _ 2x% —S5x+7

x—3

Solution: Vertical: x = 3 Horizontal: none Inclined: y = 2x + 1

x%+1

3.y = Ans.x =—-1l,y=x-—1

1+x

4 y=x+e™™ Ans. y =x
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5.y =a® —x° Ans. No asymptotes

1 1 1
6.y =xIn(e+-) ANS. x = —=,y=x+-
7.y =xex? Ans. x =0

x%—

2x—4

8. Sketch the function y =

Keywords: Asymptotes, horizantal, vertical and inclied asymptotes.
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Module 1: Differential Calculus

Lesson 15

Tracing of Curves

15.1 Introduction

Now we use some mathematical techniques to trace curves and graphs of

functions much more efficiently. We shall especially look for the following

aspects of the curve.

1.
2.

8.
9.

Intersection with the coordinate axes.

Critical points

. Regions of increase

. Regions of decrease

. Maxima and minima (including local ones)

. Behaviour as x becomes large positive and large negative.

. Values of x near which y becomes large positive or large negative.

Regions where the curve is convex up or down.

Asymptotes of the curve

10. Find whether the curve is symmetric

15.2 Behaviour as x becomes very Large

Suppose we have a function f defined for all sufficiently larger numbers. Then

we get substantial information concerning our function by investigating how it

behaves as x becomes large.

For example, sin x oscillates between -1 and +1 no matter how large X is.
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However, polynomials do not oscillate. When f(x) = x* as x becomes large
positive. So does x. Similarly with the function x3, or x* (etc.). We consider this

systematically.

Example 15.1 Consider a parabola,

y:aX2+ bx+ ¢, with a # 0.

There are two essential cases, when a > 0 or a < 0. We have the parabola which

looks like in the figure

y=ax’+bx+c y=ax’+bx+c
a>0 a<o

We look some numerical examples.

Example 15.2 Sketch the graph of the curve

y=f(x) - 3x* +5x -1

We recognize this as a parabola.

f(x):xz(—3+§—i2),
X X

when x is large positive or negative, then x* is large positive and the factor on

the right is close to -3. Hence f(x) is large negative. This means that the
parabola has the shape as shown in figure.
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o

We have f'(x) =—6x+5. Thus f'(x)=0 iff x=% There is exactly one

o 5 5\’
critical point. We have f 5 =-3 5 +—-1>0

The critical point is a maximum, because we have already seen that the parabola

bends down.

The curve crosses the x-axis exactly when

—3x*+5x-1=0
L _5EV25-12 5413
N -6 6

Hence the graph of the parabola looks as on the figure.

/N

Bending down or convex upward

(ep(d)]

The same principle applies to sketching any parabola.

(i) Looking at what happens when x becomes large positive or negative tells us

whether the parabola bends up or down.
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(if) A quadratic function
f(x) =ax’ + bx + ¢ witha#0
has only one critical point, when

f'(x)=2ax+b=0

So X=—
2a

Knowing whether the parabola bends up or down tells us whether the critical

o : - -b :
point is maximum or minimum, and the value x = Z—tells us exactly where this
a

critical point lies.

(iii) The points where the parabola crosses the x-axis are determined by the

quadratic formula.

Example 15.3. (Cubics) Consider a polynomial
f(x) = x* + 2x — 1, find f(x) when x — . We have

We can write it in the form

x> (1+£2—i3jand, when X — +oomeans f (X) — +o
X2 X

Example 15.4. (a) Consider the quotient polynomials like

X3 +2x -1
2x3 —x +1

Q(x) =

Here if X — oo, then Q(X) —>%.
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x3 -1

Example 15.4(b) Consider the quotient Q(X) =—; =
X+

Here lim Q(x)=-+o0 and  lim Q(x) =~

X—>+00

The meaning of the above limit is that there is no number which is the limit of

Q(x) as X > 400 or X > —00,

We can now sketch the graphs of cubic polynomials symmetrically.

Example 15.5 Sketch the graph of f(x) = x® - 2x + 1

1. If X — +oothen f(X) >+
If X > —oothen f(X) > -0

2. We have f'(x)=3x*-2
f'(x)=0 < x== %

The critical points of f are x=+,/% and x=—,/% ]

3. Let g(x) = f'(x) =3x* —2. Then the graph of g is a parabola which is given

as

v

@;& 2/

Graph of g(x) = f'(x)
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Therefore, f'(X)>0 < x> ,/% and x<—,/23 , Where g(x) > 0 and fis

strictly increasing on the intervals x > ,/% and X< —, /% :

Similarly f'(x)<0 < —,/%<x< ,/23 where g(x) < 0, and f is strictly
decreasing on this interval . Therefore — % Is a local maximum for f, and

% Is a local maximum.

4. f"(x)=6x,and f"(x)>0 iff x>0and f"(x)<O0 iff for x >0, therefore f

Is bending up ( convex downward ) for x > 0 and bending down ( convex

upward ) for x < 0. There is an inflection point at x = 0.
Putting all this together, we find that the graph of f looks like this

/ graph of f(x) = x*— 2x + 1

Example 15.6 Sketch the graph of the curve.

y=-x*+3x-5
1. When x =0, we have y = -5. With general polynomial for degree > 3 there is
in general no simple formula for those x such that f(x) = 0, so we do not give

explicitly in the intersection of the graph with the x — axis.

2. The derivative is f'(x) =-3x*+3
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f'(X)=0<= x=%1

The graph of f'(x) is given by

/1
B

f’'(x)=-6x, f"()=-6, f"(-1) =6, f"(x)>0 iffx<0and f"(x) <0 iff

x> 0. x =0 s an inflection point x = 0.

f is strictly decreasing < f'(x) <0
< x<-land x>1

f is strictly increasing < f'(x) >0
< —1<x<1.

Therefore f has a local minimum at x = -1 and local maximum at x = 1.

Putting all this information together, we see that graph of f looks like this

graph of f(x) =-x®+3x+5

Example 15.7 Let f(x) = 4x*+2. Sketch the graph of f.
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Solution:

Here we have f’(X)=12x*>0 V x #0. There is only one critical point, when

x = 0. Hence the function is strictly increasing for all x, and its graph looks like

f"(x)=24x>0 for all x>0

f"(x)<0 for x<0

/ — Convex downward

convexup «—

Example 15.8 Sketch the graph of f(x) = 4x° + 4x .

Solution:
f'(xX)=3x*+4>0 VX
f"(x)=6x>0 for x>0

f"(x)<0 for x<0
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So the graph looks like

Convex downward

Convex upward

In both the above examples x = 0 is an inflection point.

15.3 Rational Functions

We shall now consider quotient of polynomials.

Example 15.9 Sketch the graph of the curve

1. When x =0, we have f(x) = 1. When x = 1, f(x) = 0.

2

2. The derivative is f'(x) =
(x+1)

2

It is never zero, so the function has no critical points.

3. The denominator is a square and hence is always positive, whenever it is

defined, i.e., for X #—1. Thus f'(x) >0 for x# —1. The function is not

defined at x = -1 and hence derivative also is not defined at x = -1, i.e., f(x) is

Increasing in the region x < -1 and is increasing in the region x > -1
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f4)

>
H
[y

k=0

4. There is no region of decreasing.
5. Since the derivative is never zero, there is no relative maximum or minimum.

4
(x+l)3 '

6. The second derivative is f"(X) =

There is no inflection point since  f "(x) = 0 for all x where the function is
defined. If x <-1, (x+1)®<0,and f"(x) >0, f(x) is bending up or convex

downward. If x > -1, then x+1 > 0= (x+1)*>0. So f"(x)<O0i.e., f(x) is

x-1 X(l_lj
X 1

7.As x>, fx) >1 f(x)=——==1Iim

X+1  xom x(1+1j
X

bending down (convex upward).

when X — —oo, f(X) >1
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8. As X — —1, the denominator approaches 0 and the numerator approaches -2.

If x approaches -1 from the right so x > -1, then the denominator is +ve and the

: : .o x=1 . : :
numerator is negative. Hence the function <ol IS negative , and is large
X+

negative. Putting all these information we get the graph looks like the given

figure.

EXERCISES

Sketch the following curves, indicating all the information stated in the

examples etc.

X° +2
1. y=
y X—3

X—3
2. Y=
RN
3. y=x*+4x
4.y =x°+X

5. f(X)=x"+3x>—x*+5

7. Show that a curve y=ax’+bx*+cx+dwith a=0 has exactly one

inflection point.

Keywords: Curve tracing, increasing, decreasing, convex up, convex down.
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Module 2: Integral calculus

Lesson 16

Improper Integral

16.1 Introduction

Integral with infinite limits. Let a function f(x) be defined, positive and continuous

for all values of x such thata < X < co. Consider the integral

1 (b) =jb f (x) dx

|

TN :

A

Fig. 1
This integral is meaningful for b > a. This integral varies with b and is continuous

function of b. Let us consider the behavior of this integral when b — +oo (Fig. 1).

Definition 16.1 if there exists a finite limit

lim [ £ (x) dx

b—w
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Improper Integral

Then this limit is called the improper integral of the function f(x) on the interval

[a,+o0] and is denoted by the symbol

j:” f (x) dx

Thus, by definition, we have
+00 . b
j f(x)dx=|!)|mf f (x)dx

b
In this case it is said that the improper integral exists or converges. If _[ f (x) dx
a

as b — +oo does not have a finite limit, one say that rw f (x)dx does not exist or
a

diverges.

If f(x)>0, the geometrical meaning of the improper integral can be seen as if the

b
integral I f (x)dx expresses the area of region bounded by the curve y = f(x), the
X — axis and the ordinates x = a, X = b, it is natural to consider that the improper
integral rw f (x)dx expresses the area of an unbounded ( infinite ) region lying

between the curve y = f(x), x = a and x-axis.

We similarly define the improper integrals of other infinite intervals:

[* f(xdx= lim j:f(x)dx

— a—>—o
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Improper Integral

[T dx= j_; f(x)dx + j_; f (x) dx

The latter equation should be understood as if each of the improper integrals on the

right exists, then, by definition, the integral on the left also exists (converges).

dx
2

Example 16.1: Evaluate the integral J‘Oﬂol
+ X

Solution:

By the definition of improper integral we find

I 0)'¢ b dX : 4P 7
j > :Ilmj >=limtan™ x| =—
0 1+X b—wdJ0 1 4+ X b—o0 0 2

Note that this integral expresses the area of an infinite curvilinear trapezoid crosses

X —axis as X — 0.

dx
1+ x?

Example 16.2: Evaluate I ~

Solution:

0 1+ x> o]+ x>

= d dx (= d
[ Lt e

The 2" integral is  equal to % (see example 1)
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Improper Integral

Compute the First Integral:

0 X ] 0 X . 0 .
| d 7= lim | d -=limtan™ x| = lim (tan"0~tan""b) ="
—0 1+X b—>—wdb 1+X b——x b b——x 2
+00 X
Hence,j d 2:£+£:7r
= 14X 2 2

In many cases it is sufficient to determine whether the given integral converges or
diverges, and to estimate its value. The following theorems, which we give without

proof, may useful in this respect.

Theorem 16.1: Let f and g be continuous function on the interval [a, ) with

0< f(X)<g(x) Vasx<oo,

If jmg(x) dx converges then '[ i (x) dx also converges, and

ja*w f(x)dx < L”’g(x) dx

Theorem 16.1: The integral of a discontinuous function:

The integral j i (x)dx of the function f(x) discontinuous at a point c is defined as

follows:
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Improper Integral

j f (x)dx:JLr(r)lJ':_g f (x) dx

If the limit on the right exists, the integral is called an improper convergent
integral, otherwise it is divergent. If the function f(x) is discontinuous at x = a of

the interval [a,c] then by definition ,

ff(x)dx:lim °+ f (x) dx

a c—0Ja+e

If the function f(x) is discontinuous at some point X = X, inside the interval [a,c] ,

we put
j f(x) dx:f:° f(x)dx+fxc f (x) dx

If both the improper integrals on the right hand side of the equation exist.

dx
J1-x

1
Example 16.3 Evaluate jo

Solution:

Jlizlimr—gidx
0 /1_X e—04J0 ll_X

= lim 1_8(1— x)_% dx

e—04J0
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Improper Integral

=—2J1-x
- |im—2(JE—1) =2

-0

1-¢
0

: 1 dx
Example 16.4: Evaluate the integral j R
-1X

Solution:

Since inside the interval of integration there exist a point x = 0, at which the

integrand is not continuous, we express the integration as:

1dx .. eoedx . 1 dx
— =lim —2+I|mf —
—1X e—>0J-1 X &0 O+5X
. r-«d . ridx
:Ilm —2+I|m —2
G e>0dJe )
- 1
1
=lim-= —-lim=
&0 )(_1 g—)OXg

= —Iim(—1 +1j— Iim(l—lj
&—0 E &—0 E

But —Iim[—l +1j = o0 and —Iim[l—l) = oo i.e., the integral diverges on [-1,0]

-0 E &—0 E

aswell ason [0,1] .

Hence the given integral diverges on the entire interval [-1, 1].
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Improper Integral

It should be noted that if we had evaluated the given integral without paying

attention to the discontinuity of the integrand at point x = 0, the result would have
1

_ _(l_ij 2
3 1 -1

For determining the convergence of improper integrals of discontinuous functions

ax_-1

1d
been wrong as j - =
-1x X

and for estimating their values, one can refer Lesson 17. These integrals are

discussed in details in Lesson 17 also.

c dx c dx
L %) also LW

It is easy to verify that i

( X converges for p < 1 and diverges for p > 1.
a(c—x

Same applies also to 2™ integral.

EXERCISES

Evaluate the following improper integrals:

1 dX
J0 1_X2

2. [Tedx
JO

o dX
Jo a% +x
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Improper Integral

1 X
4, d
o1
5 0Inxdx

Ans.:1.1,2.1,3. 2 (a>0),4. ~ &5.1
2a 2

Keywords: Improper Integrals, Positive Function, Area Of the Region.
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Module 2: Integral Calculus

Lesson 17

Tests for Convergence

17.1 Introduction

In this Lesson the convergence of Improper Integrals is studied.

Definition 16.1 if there exists a finite limit

lim :f(x)dx

b—o0

Then this limit is called the value of the improper integral of the function f(x)

on the interval [a,+o0| and is denoted by the symbol

j:" f (x)dx
Thus, by definition, we have
[[7 f)ax=lim " (x) dx

In this case it is said that the improper integral exists or converges. If
b 0

j f (x)dx as b — +oo does not have a finite limit, one say that r f (x)dx
a a

does not exist or diverges.

If f(x)>0, the geometrical meaning of the improper integral can be seen as if

the integral jb f (x)dx expresses the area of region bounded by the curve y =
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Tests for Convergence

f(x), the x — axis and the ordinates x = a, x = b, it is natural to consider that the
improper integral roo f (x)dx expresses the area of an unbounded ( infinite )
a

region lying between the curve y = f(x), x = a and x-axis.

We similarly define the improper integrals of other infinite intervals:

j_’; f(x)dx = lim

a—>—0

[ " f (x) dx
[T redx=[" foodx+[ f(x)dx
The latter equation should be understood as if each of the improper integrals on

the right exists, then, by definition, the integral on the left also exists

(converges).

Example 16.1 Find out at which p the integral Il+wd—); converges and at which
X

it diverges.

Solution:

Since (when p #1)
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Tests for Convergence

b
bdx 1 o :L(blp -1)
1xP 1-p , 1-p

We have
j“ﬁz lim L(bl-p -1)

1 xP boiw]— P

Consequently, with respect to like this integral we conclude that if p > 1, then

J.M% = 1 , and the integral converges.
1 xP p-1
+o (X : :
If p<1,then L — = and integral diverges.
X
e dX +00 . .
When p =1, L N =1In x|1 =00, and the integral diverges.

Note: We call the p-integral food—):converges for p>1, and diverges for p <1
X

which is in the comparison test of improper integral used.
In many cases it is sufficient to determine whether the given integral converges
or diverges, and to estimate its value. The following theorems, which we give

without proof, may useful in this respect.

Theorem 17.1. Let f and g be continuous function on the interval [a,0) with

0<f(X)<g(x) Vasx<ow,
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If I+wg(x)dx converges then rwf(x)dx also converges, and

L“” f(x)dx < L*‘”g(x) dx

Example 17.2 Investigate the integral fm for convergence.

x*(1+¢€%)

Solution:

It will be noted that when 1< x

1 1

—— <
x*(1+e*) x?

=1

1

And +wd—)2( = 1
1 X X

Consequently, converges, and its value is less than 1. Hence

J'+°0 dx
L x*(1+¢%)

rwﬁ converges.
1 x“(1+e%)

Theorem 17.2. If for all x(x>a),0<g(x) < f(x) holds true and FOO g(x)dx

diverges, then the integral '[ "t (x)dx also diverges.

Example 17.3 Find out whether the following integral converges or diverges.

dx

J‘+°0 Xx+1

1 /XS
Solution:
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Tests for Convergence

X+1 X 1

oo dX

= as p= % < 2. Hence the given integral is divergent.

We note that

But T
1 X2

In the above two theorems we considered improper integrals of nonnegative
functions. For the case of a function f(x) which changes its sign over an infinite
interval we have the following result.

Theorem17.3. If the integral I+w|f(x)|dx converges, then the integral

roo f (x)dx also converges.

In this case, the later integral is called an absolutely convergent integral.

Definition 17.1: An integral jm f (x)dx converges conditionally if and only if

rw f (x)dx converges but J.+Oo| f (x)|dx is not convergent.

© SIN X
X3

Example 17.3 Investigate the convergence of the integral L+ dx.

Solution:
sinx| |1 w0 1
Here, |——|<|—{. But _[ — dx convergentas p = 3.
X X 1 oX
: = Sin X
Therefore, the integral L -—dXx also converges.
X
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Tests for Convergence

17.2 The Integral of a Discontinuous Function

A function f(x) is defined and continuous whena < x < ¢, and either not defined

or discontinuous when x = c. In this case, one cannot speak of the integral
c

I f (x)dxas limit of integral sums, because f(x) is not continuous on [a, c] and
a

for this reason the limit may not exist.

The integral j U f (x) dx of the function f(x) discontinuous at a point c is defined

as follows:

f f(x)dx = |imL°"’" f (x)dx

a &—0

If the limit on the right exists, the integral is called an improper convergent
integral, otherwise it is divergent. If the function f(x) is discontinuous at x = a of

the interval [a, c] then by definition,

J.Cf(x)dx:lim (%) dx

a c—0Jat+e

If the function f(x) is discontinuous at some point X = X, inside the integral [a, c]

, we put

[ fe0dx=["f(x)dx+ [ f(x)dx
If both the improper integrals on the right hand side of the equation exist.

: 1 dx
Example 17.4 Test the convergence of the mtegraIJ‘ o7
-1x
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Tests for Convergence

Solution:

Since inside the interval of integration there exist a point x = 0, at which the

integrand is not continuous, we express the integration as:

T Ty

1)(2 e—>0J-1 X2 -0 J0+e X2

. r-edx . erdXx
:Ilm —2+I|m —2
e->0J-1 y e>0d¢e Y

)
—lim=
&—0 X

i 1
=lim—=
&—0 X 4

= —Iim(—£+1)— Iim(l—ij
&0 E &0 E

But —Iim[—l+1j:oo and —Iim(l—lj:oo i.e., the integral diverges on [-

e—0 E &—0 E

1, 0] as well as on [0,1] .

Hence the given integral diverges on the entire interval [-1, 1].

It should be noted that if we had evaluated the given integral without paying

attention to the discontinuity of the integrand at point x = 0, the result would

1
have been wrong as Il d—)z( = -1 = —(1 —ij =-2
-1X X |4 1 -1
This is impossible (Fig. 3)
x=0
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Tests for Convergence

(-1, 1) 1,1)
\ \ -
1 1 y=0
Fig. 3

Note: If the function f(x), defined on the interval [a, b], and has finite number

of discontinuity points ai, ay,...., a, within the interval,

If each of the improper integrals on the right side of the equation converges then

b
j f (x)dx s called convergent but if even one of these integrals diverges, then
a
b
f f (x)dx too is called divergent.
a
For determining the convergence of improper integrals of discontinuous

functions and for estimating their values, one can frequently make use of

theorems similar to those used to estimate integrals within infinite limits.
Theorem 17.3. Let f(x) and g(x) be continuous functions in [a,c] exceptatx =c¢

and at all points of this interval the inequalities g(x) > f(x) hold and

jcg(x) dx converges, then I i f (x)dx also converges.
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Theorem 17.4. Let f(x) and g(x) be continuous functions on [a,c] except at X =

c and at all points of this interval the inequalities f(x) > g(x) >0 hold and

LC g(x) dx diverges, then LC f (x) dx also diverges.

Theorem 17.5. Let f(x) be a continuous function on [a, c] exceptat x = ¢, and

the improper integral IC| f (x)|dx of the absolute value of this function

converges, then the integral r f (x)dx of function of itself also converges. We
a

frequently come across the improper integral of the following types.

¢ dx c dx
L %) , also L (x_a)’

It is easy to verify that i
2 (c-x)°

converges for p < 1 and diverges for p > 1.

Same applies also to 2™,

1
Examplel7.5 Does the integral _[0 converge?

dx
VX+4x°
Solution:

The integrand is discontinuous at x = 0.

Now ! < 1

Jx+axd x

1 1
The improper integral _[Od—)l( as %<1 exists and hence _[0 also
X2

dx
VX +4x3

exists.
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EXERCISES

Test the convergence of the following improper integrals:

1. ijsin X dx
0

. d
2.]1%(

E8 dx
3| ———
o X° 42X+ 2
1dx
OX%
2 dx
3

6. Let b > 2. Find the area under the curve y =e ** between 2 and b. Does this

area approach a limit whenb — oo . If so what limit?

7. Can an improper integral J.w f (x)dx ever be transformed onto a proper
a

integral by a change of variable?

Ans.: 1. The integral diverges, 2. The integral diverges, 3. 7, 4. % 5. The

integral diverges, 6. —%e‘Zb +%e‘4 , yes %e“‘ & 7.Yes, f(x) :i2 , X =
X

—~ |

Keywords: Convergence, absolutely convergence, comparison test.
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Module 2: Integral Calculus

Lesson 18

Rectification

18.1 Introduction

The method of finding the length of the arc of the curve of is called the

rectification. Let y= f (x)be a differentiable function defined on [a,b] with

a<b and assume that its derivative is continuous. Our aim is to determine the
length of the curve described by the graph. The main idea behind this is to

approximate the curve by small line segments and add these up.

(Xz,f(Xz) (X4, (X4)
\(X3,f(X3)

Fig .1

We consider a partition of the interval[a,b]. a=X, <X <X, <X,......<X =b

n

In figure 1 take n=4 for simplification.

For each X we have on the curve(x;, f (x;)). We draw the line segments between

two successive points. The length of such a segments the length of the line

between
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(%, T (x))and (X1, T (Xi11)) is equal to \/(Xi+1_xi 4 (F )= FO))

(1)
( f (Xi+1)_]c (Xi)) = (Xi+1_xi) f ,(Ci)

By mean value theorem, we conclude that

f(x.0)— f(x)=(Xu—%) f'(c) , where ¢ e(x,x.,)

Hence (1) becomes now

Hence the form of the line segment is

n-1

I B (18.3)

i=0
Now as f'(x)is continuous function. So is H(x) =1+ f'(X)*> . So we can write
n-1
egn. (3) as > H(c)(X..—X)

i=0

Since H(x)is continuous on[a,b] H(c) satisfies the inequalities:

minH <H(c ) <maxH

[% %] [% %]
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Rectification

l.e., H(c)lies between the minimum and the maximum of on the
interval[x;, x,.,]. Thus the sum we have written down lies between a lower sum

and an upper sum for the function H . We call such sums as Riemann sums.

This is true for every partition of the interval.

We know from basic integration theory that there is exactly one number lying
between every upper sum and every lower sum, and that number is the definite

interval. Therefore it is reasonable to define:

Length of our curve betweenaand b

- 1+(dyj dx=[ [+ 0P Jax (18.4)

Similarly for x=¢(y)and ¢'(y) are continuous on [a,b] , then the length of our

curve between aand b is

= (dxjdy [N+ g (y) dy

Example18.1 Find the length of the arc of f(x)=x’ on [0, 4].

Solution:
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As f, f'(x) :gxﬁare both continuous on [0, 4], the length of the arc or length

‘ 3.V .t 9
ofcurveL:'[ 1+(—x2j dx:J' 1+—xdx |,
0 2 0 4

Let1+%x:t, when x=0, t=1,

x=4,1=10

4 10
j,/1+gx dX=£J‘t2d'[:£><g><t2
0 4 94 9 3

Example 18.2 Find the length of the curve y=x* between x =0 and x =1.

10

- i[10g —1}
27

Solution:

From the definition above, we see that the integral is

1 I
J‘\/1+ (2x)%dx = j\/1+ 4x?dx set u =2x, du = 2dx
0 0

When x=0, u=0, x=1, u=2

1 2
Hence j\/1+4X2dX:%j\/1+u2du ---------------------------- (18.5),
0 0

b
We can find the integral [v1+x*dx forb >0, as
0

%{%(b+\/ﬁ)2 + 2|n(b+\/m>_%(b+m)—z}
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SO ? 1+u®du =£F(2+x/§)2 +2In(2+\/§)—%(2+\/§)2}

412

Hence (18.5) becomes: %B(zh/g)z +2In(2+\/§)_%(2+\/§)—2}

18.2 Length of Parameterized Curve

There is one other way in which we can describe a curve. Suppose that we look
at a point which moves in the plane. Its coordinates can be given as a function

of time t. Thus, we get two functions of t, say
x=1(t), y=9(,

We may view these as describing a point moving along a curve. The functions f

and g give the coordinates of the point as function of t.

Example 18.3 Let, x=rcos@,y=rsinéd . Then

(x,y)=(rcos@,rsind) is a point on the circle.

- r=1

As @ increases, we view th oving along the circle in anticlockwise

direction. The choice of letter &' really does not matter and we could use t
instead. In particular, the angle @ is itself express as a function of time. For
example, if a bug moves around the circle with uniform (constant) angular

speed, then we can writed = w t, where @ is constant.

Thenx=cos(wt),y=sin(wt).
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When (X, Yy)is described by two function of t as above, we say that we have a

parameterization of the curve in terms of parameter t.

This describes the motion of a bug around the circle with angular speed . Note
that the parametric representation of a curve is not unique. For

examplex=rsind, y=rcos@d also represents a point on the circle.

We shall now determine the length of a curve given by a parameterization.

Suppose that our curve is given by
x=f(),y=g(t),with a<t<b

and assume that both f, g have continuous derivatives. With eqgn (18.4) it is very

reasonable to define the length of our curve (in parametric form) to be

b

& JE 7 +g'(t)? dt.

Observe that when a curve is given in usual form y = f(x) we can let

t=x=g () andy="(t).

This shows how to view the usual form as a special case of the parametric form.
In that case g'(t) =1 and the formula for the length in parametric form is seen to
be the same as the formula we obtained before for a curve y = f(x) .It is also
convenient to put the formula in the other standard notation for the derivative.
We have
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Rectification

dx dy
—=f'(t) and ==y'(t
” () ot y'(t)

Hence the length of the curve can be written in the form

w5 (3] o

Without loss of generality let

s(t) = length of the curve as function of t.

Thus we may write

_t % 2 ﬂ 2
s(t)—l\/(dtj +(dtj dt

This gives

dS_ %2 ﬂz_ RY (412
E—J(dt) +(dtj =JEO +g'(t)

Sometimes one writes symbolically
(ds)* = (dx)* + (dy)®

To suggest the Pythagoras theorem i.e.,
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2
E = |1+ (ﬂ)
dx dx

Example 18.4 Find the length of the curve x =cost, y=sint between
t=0,t=nx

Solution:

The length is the interval

T

!J(sint)2 +(cost)” dt
o

If we integrate between Oand 27 we would get 2z . This is the length of the

circle of radius 1.

Example 18.5 Find the length of the curve x =e'cost , y=e'sint between t
=landt=2.

Solution:

12 = j\/{(e‘ cost)i2 +[(etsint)i2 dt

1

2
= J‘\/(—et sint +e' cost)” + (e' cost + e'sint)® dt
1

2
= J‘\/(e2t sin’t +e* cos’t +e* cos’t + e* sin’t) dt
1
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:\/Ej'e‘dt :\/E[ez —e]

Example 18.6 Find the length of the curve

x=c0s’6 , y=sin*g for 0<O<7

Solution:

We have 3—2 =3c0s” #(-sinb)

d—y=35in2¢9c059

déo

Hence,

|12 :I\/9c0346+93in49c0329 dé
0

Z
2

—3[+/cos2@sin’0 do
0

=3[sinfcos® do as sing, cosd >0 for 0<0<7

0

Hence

|5

K zgjsinecose dezéjsinze de—ECOSZH _3
0 ) 20 4 2

0

EXERCISES
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Rectification

Find the length of the following curves:

1
1. y=Inx,=<x<2,

2
2. y=4-%x°,-2<x<2,

1 X —X

3. y:E(e +e7") between x=1landx=-1

4. y=Incosx,0<x<Z£,

5. Find the length of the circle of radiusr .

6. Find the length of the curve x = cos’, y = sin’t betweent=0and t =
7. Find the length of the curve x=3t,y=4t-1, 0<t<1.

8. Find the length of the curve x =1-cost,y=t-sint, 0<t<2r.

9. Using exercise (9), find the length of the curve r=sin’4 from 0to r.

J5 44245 17 +
Ans.: 1. —+I ( +\/_} 2. 217 +1 [\/1_7 2] 3.e—%,4. In(2+\/§),

5. 27r,6.3,7.5,8.8&9.2

Keywords: Rectification, length of curve, parametric form,
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Module 2: Integral Calculus

Lesson 19

Volume and Surface of Revolution

19.1 Introduction

Volume of Revolution: We start our applications with volumes of revolutions.
Our aim is to find the lengths, areas and volumes of the standard geometric
figures.

Let y= f(x)be continuous function of xon the interval with [a,b]with (a<Db).
Assume that f(x)>0V xe[a,b]. If we revolve y=f(x) around axis, we

obtain a solid, whose volume we want to compute.

/‘
R £
+

Take a partition of [a,b]say a=x, <X <x, <X, <...x, <=b

Let ¢, be a minimum of f on the interval [x;,X,]and d;be the maximum of f in

that interval. Then the solid of revolutions is that small interval lies between a

small cylinder and a big cylinder. The width of these cylinders is X, —x and the
radius is f(c) for the small cylinders and f(d.) for the big cylinder. Hence the

volume of revolutions, denoted by V satisfies the inequalities
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Volume and Surface of Revolution

S ()2 (%, —x)<V <5 2t (d)2(x, )
i=0 i=0

b
It is therefore reasonable to define this volume to be V = [z f (x)? dx
a

If we revolve the curve around X=¢(y)around y-axis and

#(y)=0V y e[c,d], we define the volume to be V = [z f (y)* dy

If the curve be expressed by x=f(t), y=4(1)

b t,
V:;zjy2 dx=7r_[ (#(t))” f'(t)dt where t,t,are values of t that corresponds to

4

x=aand x=brespectively.
Example 19.1: Compute the volume of the sphere of radius 1.

Solution:
We take the function y =+1-x? between 0 and 1. If we rotate this curve around
X —axis, we shall get half the sphere. Its volume is therefore

1

1 3
x)dx=r(x—X) =2
iﬂ'(l X“)dx =7z (x 3 ) 37

0

So the volume of full sphere is 2)(%72’ 2%72'

Example 19.2: Find the volume obtained by rotating the region between y = x3

and y = x in the first quadrant around the x—axis .
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Volume and Surface of Revolution

/7

The graph of the region is given on the figure.

As x3=x= x(x*-x)=0= x=0,x==1, for first quadrant we take 0<x<1.
The required V volume is equal to the difference of the volume obtained by
rotating y=x and y=x.

Let f(x)=x,g(x)=x* Then

V= 7rj. f (x)>dx —ﬂj g(x)*dx

1 1
= 7z x*dx—z [ x°dXx
0 0

T_Z
3 7

Example 19.3: (Volume of Chimneys) . Consider the function f (x) -1 :

<1
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Volume and Surface of Revolution

Let O<a<1 The volume of revolution of the curve y:i between x=a and

N

1
.. dx
x =1 is given by jﬁ—x =zInx =-rlna,

As a—0, Ina becomes very large negative, so that —Ina becomes very large
positive, and the volume becomes arbitrary large. The above figure illustrates

the chimney.

In this computation, we determined the volume of a chimney near the y—axis .

We can also fixed the volume of the chimney going off to the right, say

between 1 and a number b>1. Suppose the chimney is defined by yzi. The

X

volume of revolution between 1 and b is given by the integral

b b
j;z(%jdx :jnd—;:nlnb,as b —owe see that this volume becomes arbitrary
1 0

large (divergent integral)

But we are interested to find finite volume for the infinite chimney.

Example 19.4: Compute the volume of revolution of the curve y :% between

aand 1. Find the limitas a— 0

Solution:
The volume of revolution of the curve y =i4 between x=a and x=1
X
1

1 11 1
is given by the integral jﬁildx:ﬂjx 2dx=7rx2x?| =27[1-a]
a XE a a
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Volume and Surface of Revolution

When a — 0limit becomes 2

Example 19.5 Find the volume of a cone whose base has a radius r , and a

height h , by rotating a straight line passing through the origin around the

X —axis
Solution:
J X
The equation of the straight line is y——x Slant height is y— . Hence the
h 2 2 h 3
volume of the cone is jﬁ(; j dx = zzr—szdxf;—r2 DL
0

19.2 Surface of Revolution

Let y= f(x)be a positive continuously differentiable function on an interval

[a,b]. We wish to find a formula for the area of the surface of revolution of the

graph of f around the x—axis, as given in the figure

=e

We shall see that the surface area is given by the integral
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Volume and Surface of Revolution

b 2
S = j 27y /1{%} dx

The idea again is to approximate the curve by line segments. We use a partition

a=X <X <X <Xgowrro. XX, =D

F(%..)

f(x)
Xj Xi+1

Li

\

On the small interval [x,X._,] the curve is approximated by the line segment

joining the points (x;, f(x))and (x,,, f(x.,)) . Let L be the length of the segment.

Then L =J(x0=x )" +( f () = f (%))

The length of a circle of radius yis 2zy. If we rotate the line segment about the
then the x—axis area of the surface of rotation will be between 27 f (t. )L and
2 f(s)Lwhere f(t)and f(s)are the minimum and maximum of f,

respectively on the interval [X,X ,]. This is illustrated on Fig 1.

=\

=
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Volume and Surface of Revolution

On the other hand, by the mean value theorem we can write

f (Xi+l)_ f (Xi) = f'(ci)(xm_xi) G € (Xi’Xi+1)

Hence L =(x, %)’ + £ () (4, -x)

=1+ f'(c)? (xi+1—xi)

Therefore the expression 27 f (¢,)|1+ f'(¢,)* (%, — %)

Is an approximation of the surface of revolution of the curve over the small

interval [x;, X.,]
n-1

Now take the sum 27 f (c,)\1+ f'(¢;)? (X, —X;)
i=0

This is a Riemann sum, between the upper and lower sums for the integral

b
szjznf(x) 1+ f'(x)? dx

Thus it is reasonable that the surface area should be defined by this integral, as

was to be shown.

19.2.1 Area of revolution for parametric curves given in parametric form.

Suppose that
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Volume and Surface of Revolution

x=f(t), y=9(), ast<b
We take a partition a=t, <t <t, <t,.....<t,=b

Then the length of L between (f(t),g(t))and ( f(t,.),9(t..))is given by

L= (Ft)- F®) +(00.) - 9(t))

:\/f !(Ci)z + g’(di)2 (ti+1 _ti)

where c;,d, are numbers between tand t,,

(f(t), 9(t)) Z (f(tier), 9(ti1))

Hence an(ci)\/f '(c)?+9'(d;)* (.. —t) is an approximation for the surface of

revolution of the curve in the small interval [ti,tm] . Consequently, it is

reasonable that the surface of revolution is given by the integral

b dx 2 dy 2
a dt dt

when t = X, this coincides with the formula found previously. It is also useful to

write this formula symbolically S = [27yds

where symbolically, we had used
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ds = (o)’ +(dy)’
J

When using this symbolic notation, we don not put limits of integration. Only
when we use explicit parameter over an interval a <t <bwe explicitly write the

surface area as

b ds
S=[2ry—-dt
127Y G

Example 19.6 We wish to find the area of a sphere for radiusr >0.

Solution: we can view the sphere as the area of revolution of a circle for radius

r, and to express the circle in parametric form,

X=rcosd,y=rsind,0<0<rx

Then the formula gives

O—y O—\3

S 2771 sin Or?sin@+r2cosd do

27zr25in 0de

= 27r?*(-cos 9)|Z

=4rr?
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Volume and Surface of Revolution
Exercises

1. Find the volume of sphere of radius r.

Find the volumes of revolution of the following:

2. yzi between x=0 and x=2
COS X 4

3. y=sinx between x=0 and x=%
4. The region between y=x* and y =5x
X
5. y=xe? between x=0 and x=1
6. Compute the volume of revolution of the curve y =%between x=2 and
x =b for any b>2. Does this volume approach a limit as b — « ? If yes, what

limit ?

7 o 2.5
"8 4’4' 3

T T . l
,5. 72'(8—2) & 6. ﬂ—w,yes. 24

Keywords: Lengths, area, volume, surface revolution, volume of chimneys

References

W. Thomas, Finny (1998). Calculus and Analytic Geometry, 6" Edition,

Publishers, Narsa, India.

Jain, R. K. and lyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd

Edition Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus 2" Edition, Publishers, PHI, India.

184 www.AgriMoon.Com



Volume and Surface of Revolution

Piskunov, N. (1996). Differential and Integral Calculus Vol I, & Il, Publishers,
CBS, India.

Suggested Readings

Tom M. Apostol (2003). Calculus, Volume 11 Second Editions, Publishers, John
Willey & Sons, Singapore.

185 www.AgriMoon.Com



Module 2: Integral Calculus

Lesson 20

Double Integration

20.1 Introduction

In applications of calculus we have seen with integrals of functions of a single
variable. The integral of a function y = f(x) over an interval [a, b] is the limit of

approximating sums
b , U
[ F00dx = limY" f (G, )AX, --memeeenee (20.1)
a n—)ook:1

Where a=X,<X <X, <...<X =Db, A, =X, — X, and ¢ is the any point
from the interval [Xk, Xk+1] - The limit in (20.1) is taken as the length of the longest
subinterval approaches zero. The limit is guaranteed to exist if f is continuous
and also exists when f is bounded and has only finitely many points of

discontinuity in [a, b] . There is no loss in assuming the intervals [Xx, Xk+1] t0 have

common length Ax = b—_a’ and limit may thus obtain by letting Ax=0as n — o,
n

If f(x) >0, then Ib f(x)dx from x = a and x = b, but in general the integral has

many other important interpretations (distance, volume, arc length, surface area,
moment of inertia, mass, hydrostatic pressure, work) depending on the nature and

interpretation of f.
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Double Integration

In this Lesson we shall see that integrals of functions of two or more variables
which are called multiple integrals and defined | much the same way as integrals of

functions of single variable.

Double Integrals: Here we define the integral of a function f(x, y) of two variables
over a rectangular region in xy-plane. We then show how such an integral is
evaluated and generalize the definition to include bounded regions of a more

general nature.

Double Integrals over Rectangles:

QJ____
U_____
>

Suppose that f(x, y) is defined on a rectangular region R defined by
R:a<x<b,c<y<d

(see the figure 1.)

We imagine R to be covered by a network of lines parallel to x-axis and y-axis, as

shown in Fig 1. These lines divide R into small pieces of area
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Double Integration

AA = AXAyY
We number these in some order

AALAA,,.... AA

Choose a point (X, Y«) in each piece of AA and from the sum

S I T VL (20.2)
k=1

If f is continuous throughout R, then we define mesh width to make both Axand

Ay go to zero the sums in (2) approach a limit called the double integral of f over

R that is denoted by ” f(x,y)dA or ” f(x, y)dxdy
R R

Thus [[ £ (x, y)dA= A'E\TOZHZ f (X, Y, )AA —memmeme- (20.3)

As with functions of a single variable, the sums approach this limit no matter how
the interval [a, b] and [c, d] that determine R are subdivide, along as the lengths of
the subdivisions both go to zero. The limit (20.3) is independent of the order in
which the area AA, are numbered, and independent of the choice of (X,,Y,)

within each AA, . The continuity of f sufficient condition or the existence of the

double integral, but not a necessary one, and limit question exists for many

discontinuous functions also.
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Double Integration

20.1.1 Properties of Double Integral

Like “single” integrals, we have the following properties for double integrals of

continuous functions which are useful in computations and applications.
(i) [[ & f(x y)dA=K[ f (x, y)dA (any number k)

(i) [[[f06y)+900y)]dA=[] f(x y)dA+ [[g(x,y)dA

(i) [[[f(xy)—g(xY)]dA=[] £(x, y)dA-[[g(x,y)dA

R

) [[ f(x, y)dA>0if f(x,y)>00nR

W) [ fo0y)dA= [[g(x y)dAif f(x,y)=g(x y)on R

R

(vi) If R=R,UR,,R NR,, Ris the union of two non-overlapping rectangles R;

and R,, we have

” f(x, y)dA:” f(x, y)dA+H f(x,y)dA

RUR, R

Volume: When f(x, y) > 0, we may interpret H f (x, y)dA as the volume of the
R

solid enclosed by R, the planes x =a, x = b,y = ¢, y = d, and the surface z = f(x,

y) see fig 2.

Each term f (X, Y, )AA, in the sum
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Double Integration

n

S, =) f(X.,Y,)AA isthe volume of a vertical rectangular prismy that
k=1

Z

approximate the volume of the portion of the solid that stands above the box -

AA, . The sum S, thus approximates what we call the total volume of the solid,

and we define this volume to be

Volume =lim S, = ” f(x,y)dA
R

20.1.2 Fubbin’s theorem for calculating double integrals:
Theorem 20.1. (Fubbin’s theorem (1% form))

If f(x, y) is continuous on the rectangular region R:a<x<b,c<y<d, then

[] 00 y)dA=[] £ (x,y)dxdy = [ | f(x,y)dydx

R c
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Fubbin’s theorem shows that double integrals over rectangles can be calculated as
iterated integrals. This means that we can evaluate a double integral by integrating
one variable at a time, using the integration techniques we already know for

function of a single variable.

Fubin’s theorem also says that we may calculate the double integral by integrating
in either order (a genuine convenience). In particular, when we calculate a volume
by slicing, we may use either planes perpendicular to the x-axis or planes

perpendicular to y-axis. We get same answer either way.

Even more important is the fact that Fubin’s theorem holds for any continuous
function f(x, y). In particular it may have negative values as well as positive values
on R, and the integrals we calculate with Fubin’s theorem may represent other

things besides volumes.

Example 20.1: Suppose we wish to calculate the volume under the plane z = 4-x-y

over the region R:0<x<2,0<y <1 inthe xy — plane.

Solution: The volume under the plane is given by” (4—x-y)dA.
R

Next we have to calculate the double integral.

Now we will complete the stated example.

[] 06 y)dA= ] (4-x—y)dxdy

R 0
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X2
4X ———X
)

(8—2-2y)dy

2

dy

O'—.H

0

I
O e

(6—2y)dy

Il
O e

6y—y2‘z =5

Example 20.2 Calculate ” f (x,y)dA for
R

f(x,y)=1-6x’y and R:0<x<2, -1<y<1

Solution: By Fubin’s theorem

[[ £ y)dA= [ [@-6x"y)dxdy

R -10
1 2

= j(x—2x3y)‘ dy

-1 -1
1

= j(2—16y)dy
-1

1
=2y—8y2‘_l
—(2-8)—(-2-8)=4

Reversing the order of integration gives the same answer:
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2 1
(1-6x%y)dydx = I y—3x2y2‘ dx
0 -1

Le—w
O e NV

[ (1-3x") - (-1-3x%) ] dx

Il
O ey NV

[1—3y2 +1+3x2]dx

Il
O ey NV

2x|2 =4,

0

20.1.2 How to determine the limits of Integration

The difficult part of evaluating a double integral can be finding the limits of

integration. But there is a procedure to follow:

If we want to evaluate over a region R, integrating first with respect to y and then

with respect to x, we take the following steps:
1. We imagine a vertical Line L cutting through in the direction of increasing y
2. We integrate from the y-value where L enters R to the y-value where L leaves R

3. We choose x-limits that include all the vertical lines that pass through R

x=1 y=y1-x2
Example 20.3 Change the order of integral '[ j f (x,y)dydx
x=0 y=1-x

To calculate the same double integral as an iterated integral with order of

integration reversed consider (the figure), by using the above procedure, we have
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y
A Leaves where
y=1-%
A
Leaves where
1 ? y=1-x
L
/O X 1 » X
Smallest Biggét
x=0 x=1
1 x=y1-y?
J ] feoy)dxdy
0 x=l-y

Example 20.4 Calculate deA where A is the triangle in the xy-plane
X
A

bounded by the x-axis, the line y = x and the line y = 1.

1/ x .-
Solution: j(jwdy]dx
(VR0 X
1 - y=x
:J~£S|n X y }dx
0 X y=0

1
. 1
= Ism X dX= —cos x|0 = —cosl+ = .46
0

If we reverse the order of integration and try to calculate
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1 .- .
sin x : sinx .
j—dx dy, we can’t evaluate it because we can’t express I —— in terms of
X X

y

O ey

elementary functions.

PROBLEM

Evaluate the following integrals and sketch the region over which each integration

takes place.

*3 2 2
1. .Ojo (4 - y?)dydx
2. [[* (x*y - 2xy)dyd
|, 0¢y—2xy)dydx
3. !, jo xsin y dy dx

T

4, J'Sinx y dy dx

JO JO

5. Find the value of the integral Ji) J‘Oy yedx dy

22X

6. Sketch the region of integration of H f (X, y)dydxand express the integral as
0 x2

an equivalent double integral with order of integration.

(4+7r2)

ANS:1.16,2.0,3. - 4 %,5. 9-9¢ &6.

Keywords: Multiple Integrals, Double Integrals, Triple Integrals, Area, Volume
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Module 2: Integral Calculus

Lesson-21

Triple Integration

21.1 Introduction

If F(X, y, z) is the function defined on a bounded region D in space (a solid ball
or truncated cone, for example of something resembling a swiss cheese, or a
finite union of such objects) then the integral of F over D defined in the

following way.

We partition a rectangular region about D into rectangular cells by planes

parallel to the co-ordinate planes, as shown in Fig.

The cells have dimensions Axby Ay by Az. We number the cells that lie inside
D in some order AV, AV,,....... LAV,

n

choose a point (x,,Y,,Z,) ineachAV,, and form the sum

n

S, = F (Xk y yk ) Zk)AVk """"""" (211)

n
k=1

If F is continuous and the bounding surface of D is made of smooth surfaces

joined along continuous curves, then as Ax, Ay and Azall approach zero the

sum S, will approach all limit.

lims, = [[[F(x,y.2)dv

We call this limit the triple integral of F over D. The limit also exists for some

discontinuous functions.
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Triple Integration

Triple integrals share many algebraic properties with double and single

integrals. Writing F by F(x,y,z) and G for G(x,y,z), we have the following

1. _"'k Fdv :km FdV (any numberk)
\%

2. _'"(FiG)dv :jﬂ Fdv ijy Gadv

3. [[[Fdv >0if F>0inD

4. [[[Fdv zmedv if F>GonD
D

If the domain D of a continuous function F is partitioned by smooth surface

into a finite number of cells D,,D,,....,D, , then

The triple integral Evaluation is hardly evaluated directly from its definition as a
limit. Instead, one applies a three-dimensional version of Fubin’s theorem to

evaluate the integral by repeated single integrations.

For example, suppose we want to integrate a continuous function F(x, Yy, z)
over a region D that is bounded below by a surface z = f;(x, y) above by the
surface

z=1,(x,y), and on the side by a cylinder C parallel to the z — axis (Fig. 2). Let
R denote the vertical projection of D onto the xy-plane enclosed by C. The

integral of F over D is then evaluated as
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Triple Integration

/\ - z=f
=i, y)
\/ /P7 = fl(xyy)
c (=
X \ i
Fig.12
f,(x,y)
o= ] Foxs v
D R f(xy)
or J”F(X’ y,2)dVv :_U fZ(jEly) F(x,y,z)dzdydx-------------- (21.1)
D R f(x.y)

If we omit the parenthesis .The z-limits of integration indicate that for every
(X, y) in the region R, z may extend from the lower surface z = f;(X, y) to the
upper surface z = f,(x, y). The y — and x - limits of integration have not given
explicitly in Eq (21.1) but are to be determined in. the usual way from the

boundaries of R.

We will find the equation of the boundary of R by eliminating z between the

two equations z = fi(X, y) and z =f,(X, y). This gives

fo(x, y) = fi(x, ),

an equation that contains no z and that defines the boundary of R in the xy -

plane.
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Triple Integration

To give the z -limits of integration in any particular instance we may use a
procedure like the one for double integrals. We imagine a line L through a point
(X, y) in R and parallel to the z-axis. As z increases, the line enters D at z = fy(X,
y) and leaves D at z = f,(X, y). These give the lower and upper limits of the
integration with respect to z . The result of this integration is now a function of

x and y alone, which we integrate over R, giving limits in the familiar way.

Leaves D at z = f,(X, y)

Enters D at z = f,(X, )

Fig. 12

Example 21.1 Find the volume enclosed between the two surfaces z = x*+3y?

and

z = 8-x%-y~.
Solution: The two surfaces intersect on the surface

X*+3y° = 8-X>-y?

or  X+2y* =4

which is elliptic .

So the volume of the surface is
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:JZ' (4_IX " (8—2x* —4y?)dy dx
2-Jayz N

:JZ' (4_[ )/22(8—ﬁx2 —4y?)dydx
-2 0
2 g e

- j2((8—2x2)y—§y3j dx
b

0

2

_ j(z(s— 2x2),[ LX) %(%)jdx
-2

N

4\5 2(4—x2) dx

-2

:¥2(4—x2)2dx

0

= 87z\/§

As we know, there are sometimes two different orders in which the single

Integrations that evaluate a double integral may be worked (but not always). For

triple integral there are sometimes (but not always) as many as six workable

orders of integration. The next example shows an extreme case in which all six

are possible.

Example 21.2 Each of the following integrals gives the volume of the solid

shown
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in Fig 3.

Fig 3.

11-y 2

ﬁdxdydz (b).[ H'dxdz dy

000

(a)

e Lo

1-z

j dy dx dz (d)ﬁ

1y

jdzdxdy (f)

1

4

(©)

©]

dy dz dx

O ey
O'—.I—‘
O'—.

1y

Jl-J'dzdydx
00

O ey N
O ey N

EXERCISES

1. Write six different iterated triple integrals for the volume of the rectangular
solid in the first octant bounded by the co-ordinate planes and the planes x =1,

y=2
z = 3. Evaluate one of the integrals.

2. Write six different intersected triple integrals of the volume in the first octant

enclosed by the cylinder x*+ z? = 4 and the plane y = 3. Evaluate one of the

integrals.
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Triple Integration

3. Write an iterated triple integrals in the order dz dy dx for the volume of the
region bounded below by the xy-plane and above by the paraboloid z = x*+ y?

and lying inside the cylinder x* + y* = 4.

111y
4. Rewrite the integral H _[ dzdydx as an equivalent integrated integral in the

-1x2 0
order.
a)dydzdx b)dydxdz c)dxdydz d)dxdzdy e)dzdxdy

123 213 321 312 231

Ans 1 ”jdzdydx, ”jdzdxdy,”jdxdydz,I”dydxdz,”jdxdzdy :
000 000 000 000 000

the value of each integral IS 3, 2.

3 2+/4-x 2 3+/4-x* 2V4-x2 3

H j dzdxdy,” I dzdydx,j j jdydzdx,

00 O 00 O 0 0 O

V1722 Va-z? Vix?

Keywords: Triple integral, Fubini’s theorem, volume
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Module 2: Integral Calculus

Lesson 22

Area & Volume using Double and Triple Integration

22.1 Introduction

We have seen if we take f (X, y) = 1 in the definition of the double integral over

a region in Eqgn (20.2), is the partial sum reduce to
Sh =2 f (% Vi)AA =D AA,
k=1 k=1

and give area of the regionas n— o . In that case Ax,Ay approach zero. In

this case we define the area on a rectangular region R to be the limit

Area=lim> AA :”dA (22.1)

Example 22.1 Find the area of the region R bounded by y = x and y = x? in the

first quadrant.

Solution: The area of the region is

Example 22.2 Find the area of the region R enclosed by the parabola y = x* and
the liney =x + 2.
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Area & Volume using Double and Triple Integration

Solution: x> =x+2=x*-x-2=0
X°—2X+x-2=0 ie, x(x=2)+1(x-2)=0
(x+1)(x—2)=0
Xx=-1,2

2 PX+2
Hence the area A:_[l_[ , dydx

X

2 X+2

2 3
=X o2
2 3 4
= 2+4—§ - i—2 1
3 2 3
3 2 3
:8_16+3+2
6
_g_1_9
2 2
Solution:
For order of integration reversed, draw a horizontal lin L,. It enters at X :%,
leaves at X = ﬁ To include all such lines we lety ton fromy =0 to y =

4. The integral is
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Area & Volume using Double and Triple Integration
4 ey
jo [, f(x y)dxdy
2

22.1.1 Changing to Polar Coordinates.

When we define the integral of a function f(x, y) over a region R we divide R
with rectangles, and their areas easy to compute. But when we work in polar
coordinates, however it is more natural to subdivide R into ‘polar rectangles’ we

can find the double integral in polar form as.

0= r="1,(0)
ﬁF(r,H)dA:j I F(r,0)rdrd@ ------------ (22.2) , give running numbers.

O=a r=1,(0)

Where the function F(r,0) is defined over a region R bounded by the areas

6 =a , 6= p and the continuous curve r= f,(6),r=f,(0).

If F(r,0)=1 the constant function whose value is one, then the value over R is

the areas of R (which agrees our earlier definition). Thus

Areaof R = ”rdrd@
R

Example 22.3 Find the area enclose by the lemniscate r? =2a’cos26 .

7/4

=<,
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Area & Volume using Double and Triple Integration

The area of the right-hand half to be

r=+/2acos? 26
do

T \2acos? 20 )

r=0
= j a’cos260do

A
4

2

:a—sin 20
2

ENEY

a.2
=21~ (-1

:a2

The total area is therefore 2a2.

22.2 Volume using Triple Integral

If F(x,y,z)=11is the constant function whose volume is one, then the sums in

Eq (1) reduce to S, = > 1AV, = > AV,

k=1 k=1

As A,,A,A, all approaches zero, the cells AV, become smaller and we need

more cells to fill up D. We therefore define the volume of D to be the triple

integral of the constant function f(x, y, z) = 1 over D.

Volume of D = IimZn:AVk :m‘dv :
k=1 D
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Area & Volume using Double and Triple Integration

The triple integral Evaluation is hardly evaluated directly from its definition as a
limit. Instead, one applies a three-dimensional version of Fubin’s theorem to

evaluate the integral by repeated single integrations.

22.3 Integrals in Cylindrical and Spherical Coordinates

£

(0,0,c)

v
<

@0.0) 4 (0,6,0)
X

Fig. 4

Fig. 4 shows a system of mutually orthogonal coordinates axes OX, OY, OZ.
The Cartesian coordinates of a point P(X, y, z) in the space may be read from the
coordinates axes by passing planes through P perpendicular to each axis. The
points on the x-axis have their y- and z- ordinates both zero. Points in a plane
perpendicular to the z-axis, say, all have the same z - coordinate. Thus of the
points in the plane perpendicular to the z- axis and 5 units above the xy-plane
all have coordinates of the form (x,y,5) . We can write z =5 as an evaluation for
this plane. The three planes x =2, y = 3, z = 5 intersect in the point P (2, 3, 5).
The points of the yz- plane are obtained setting x = 0. The three coordinates
planes x =0,y =0, z =0 divide the space into eight cells, called octants. The
octant in which all three coordinates are positive is the first octant, but there is

no conventional numbering of the remaining seven octants.

Example 2. Describe the set of points P(X, y, z) whose Cartesian coordinates

satisfy the simultaneous equation x*+y* =4,z = 3.
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Area & Volume using Double and Triple Integration

Solution: The points all horizontal plane z = 3, and in this plane they lie in this
cirle x? + y* = 4. Thus we may describe the set of the circle in the plane x* + y* =

4 in the plane z = 3.

22.3.1 Cylindrical Coordinates

It is frequently convenient to use cylindrical coordinates (r,8,z)to locate a
point in space. These are just the polar coordinates (r,8) used instead of (X, y)

in the plane z = 0, coupled with the z- coordinates. Cylindrical and Cartesian
coordinate are therefore related by the following equations : Equations relating

cartesian and cylindrical coordinates.

X=rcosé r=x"+y?
y=rsing tané’zl
X
=

22.3.2 Spherical Coordinates

Spherical coordinates are useful when there is a center of symmetry that we can
take as the origin. The spherical coordinates (p,q,6)are shown the first
coordinates ¢>:|OP| Is the distance from the origin to the point. It is never

negative. The equation ¢ =constant describes the surface of the sphere of radius

@ Wwith centre O. z

2 P (P’01¢)
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Area & Volume using Double and Triple Integration

The second spherical coordinate ¢, is the angle measured down from the z-axis
to the line OP. The equation p =constant describes cone with vertex at O, axis

OZ and generating angle ¢, provide we broaden our interpretation of the word

“cone” to include the xy- plane for which ¢ :% and cones the generation

angles greater than %

The third spherical coordinates & is the same as the angle & in cylindrical
coordinates, namely, the angle from the xz-plane the plane through P and the z-

axis.

22.3.3. Coordinate Conversion Formulas

We have the following relationships between these Cartesian (x, y, z),

cylindrical (r,8,2), and spherical (o, p,6)

Polar to Rectangular Spherical to Cylindrical Spherical to

Rectangular

X=rcoséd r=psing X = psingcosd
y=rsind r=pCcos¢g y = psingsing
=1 0=0 Z=pcosd

Volume : ”dedydz:”jdz rdrdez_mpzsinedpd¢d6?
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Area & Volume using Double and Triple Integration

Exercises

1. Find the area of the region R enclosed by the parabola y = x* and the line y =

X +1

2. Find the area of the region R bounded by y = x and x = y* in the first

quadrant.

3. Find the volume of the solid in the first octant bounded by the paraboloid.

z = 36 — 4x° — 9y?

4. Find the volume of the solid enclosed between the surfaces x? + y* = 9% and

X +2°=9".

5. The volumes of the tetrahedron bounded by the plane X +%+ £ _1 and the
a c

coordinate planes.

6. The volume in the first octant bounded by the planesx +z =1,y + 2z = 2.

7. The volume of the wedge cut from the cylinder x* + y* = 1 and the plane z =

y above and plane below.

8. The volume of the region in the first octant bounded by the coordinate
planes, above by the cylinder x* + z = 1 and on the right by the paraboloid y =

X% + 7°

(Hint: Integrate first with respect to y)

16a®

Ans.:1. 2. ,3.27x,4 5. l|abc|, 6. E 7. 2 & 8. 2
6 3 3 7

Keywords: Area, Volume, Double Integral, Triple Integral
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Module 2: Integral Calculus

Lesson 23

Gamma Function

23.1 Introduction: We shall define a function known as the gamma function,
I"(x) which has the property that I'(n) = (n—1)! for every positive integer n. It
may be regarded then a generalization of factorial n to apply to values of the
variable which are not integer. The function is defined in terms of an improper
integral. This integral cannot be evaluated in terms of the elementary functions.

It has great importance in analysis and in applications.

Definition 23.1 The Gamma Function: The gamma function is defined by the

improper integral
C(A+1)=[ " et dt woremereremee (23.1)

which converges for all 4> -1

To deduce some of the properties of the gamma function, let us integrate Eq.
(23.1) by parts:

400 R
L et dt = lim [ e't*dt

R—+0 J0

R
= lim [—e‘tti‘R +/1J‘ e 't” dt}
0 0

R—-+o0
_[=r? -
= lim { - +O} + /‘tj et dt
Ro>+o| @ 0

oA Ltea
__AL e 't* dt
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Gamma Function

ie. [(1+1) =AI'(A) ------------ (23.2)

If welet 4 =0 inEq 1. these results

Q) =4 jom etldt=—e" =1

0
Using Eq 23.2, we obtain

r'(2)=1I@1) =1
r'(3)=2r(2)=2!
['(4) =3(3) =31 --ememmeme (23.3)

The equations above represent another important property of the gamma

function. 1+ A4 is a positive integer.

LA 1) = A) e (23.4)

It is interesting to note that I'(1) is defined for all A4 except
A =0,-1,-2,......by the functional equation I'(1+1) = AI'(1) ; infact, we need
to know I'(4) only for 1< A1 <2 to compute I'(1) for all real values of A . Fig
1. llustrates the graph I'(A4)
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Gamma Function

Fig 1. I'(1) the Gamma function

Certain constants related to I'(x) . We shall show that F(%) =+/7 . Inorderto

do this, we compute first the so-called probability integral.

Theorem 23.1. _[:O e Xdx = %\/;

To prove this, consider the double integral of e~ over two circular sectors D,
and D, and the Square S indicated in Fig 2.

Since the integral is positive, we have

g<£j<ij (24.1.5)

4
/ (R.R)
S
D,
Dz .
0 (R0) \Rx@ 0) X
Fig 2.
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Gamma Function

Now evaluate these integrals by iterate integrals, the centre one in rectangular

coordinates, and other two in polar coordinates:

joRe‘rZ r drjfdé’ < _[ORe‘XZ dijR eV dy < j:ﬁe‘rz r drjfd@
Ti-e)<([le o) <Z(1-e7)

Now let R — o0, then

+00 2 2
(I e dx) _Z

0 4
N3

. +00 _2
e, | e X dx=

Theorem 23.2. F(%) — \/;
1 +00 = +00 —1-
Now, r(—j :j e 'tz dt :j et 7 dt
2 0 0
= ZI:O eVdy=r sett=
Example 23.1 Evaluate the integral Ew xie ™V dx
Solution: Set x = t%, dx = 2tdt

+00 %_\/; . Jroo%_t _ g
jo X*‘e dx_Z'[0 tze"dt =2I'(3)

y2
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Gamma Function

From the recursive relation (2) , we obtain

Fey-1.5 3pg 10537
2 22 8 2

Finally, the volume of the integral is

105 Jz _105V%
2

rw xie*dx = 2x S

0

Example 23.2 Express the product

f(r)=r(r+h)(r+2h)...... [r + (n—21)h] as a quotient of gamma functions.

Solution: We have

obtained by the recursion Eq. 2 with 4 :%

Some special cases of the result of Example 2 are interesting. For particular

case, setr=1and h=2. Then
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Gamma Function

_2'T(n+3)

1.35...(2n-1) 0

Ly =r@ =T
But EF(E)—F(z)— 5

Hence

2'T(n+3)

Jz

1.35...2n-1)=

However,

1.35...(2n-1)=135....(2n 1) 22020
2.4.6....2n

_(2n)!

2"n!

Now combining the two equations above , we get

_@nt Nz _ @)

r(n+4
(n+3) oNpt 2N 22N,

forn=1,2,......

Other expressions for I"(x)

Theorem 23.3. T'(x) =r" j e "t*tdt, r>0, x>0
0
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Gamma Function

This follows from the definition

C(x)=[e 't dt, set rt=y
0

Theorem 23.4. I'(x) = ZI e 't dt
0

Proof: Set t* =y
Extension of definition

Definition : Forn=1,2,....

I(x+n)

I'(x)= —n<x<-n+1
X(X+D)(X+2)....(x+n=1)

Thus we have defined I"(x) for all x except x = 0,-1,-2,.... Observe that when

n =1 the right hand side of (6) depends on the values of F(x) in the interval

0<x<1. Itis clear that F(x) has been defined for negative x in such a way that

equation

[(x+1)=xT(x)for x#0,-1,-2,....-------- (23.6)

Example 4. Compute I'(%)

From equation (7), we have
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Gamma Function

Exercise

Evaluate each integral

1. ;‘:'O\/;e‘xdx

+00
2
2. _[xz e " dx
0

3. Tx“‘ e V¥ dx
0

4. j(l—x)3 e *dx
0

400

5, J' x3 e V¥ dx
0
6. Show that the improper integral j e 't*dt converges for x > —1land diverges
0
for x<-1.
1
dx
7. Compute | —
0 XIn (%)

8. Evaluate j2‘9x2dx using gamma function ( Hint: 2% = In2)
0
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Gamma Function

=

Ans: 1.T(3)or 7”,2. 6,3. 00, 4. -9394,5. 2x71,6. 7. 27 &8.
1]z
6VIn2

Keywords: Gamma Function, Convergence of Integral, Factorial Function
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Module 2: Integral Calculus

Lesson 24

The Beta Function

24.1 Introduction

In this Lesson we shall introduce a useful function of two variables known as
beta function. Its usefulness is considerably overshadowed by that of gamma
function. In fact, we shall show that it can be evaluated in terms of the latter
function. As consequence, it would be unnecessary to introduce it as a new
function. Since it occurs so frequently in analysis, a special designation for it is

accepted.

Definition 2.2

For x, y positive we define the Beta function by

1
E{;x;y}_/ (2711 — )P dt.
o)

Using the substitution u =1 - t it is easy to see that

Theorem 24.1. Blx.y) = Bly.x).
Here we say the beta function is symmetric.

To evaluate the Beta function we usually use the Gamma function. To find their
relationship, one has to do a rather complicated calculation involving change of

variables (from rectangular into tricky polar) in a double integral.

When x and y are positive integers, it follows from the definition of the gamma
function I'that:
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The Beta Function

(o= iy~ 1)!
(x+y—1)!

B(z,y) =
Theorem 24.2. For 0<x<o,0<y<o0,
B(x.y) = | (sint)”" (cost)™ dt

To prove this set t =sin’u in the integral.
/2
B(z,y) = 2/ (sin@)*(cosf)?¥ ! df, Re(x) > 0, Re(y) > 0
0

Theorem 24.3. For 0<x<o,0< y<o0,

x—1

'B(X’ y) ¥ .[mmdt

Here the change of variable t =u(1+u) ™ suffices.

It has many other forms, including:

Theorem. For 0<x<®,0<y<w

[(z)T(y)

Blz,y) = ['(x+y)
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The Beta Function

Proof : When x and y are arbitrary positive numbers, the proof proceeds as

t2—u?

follows. From the double integral of the nonnegative function t**u®"e
over the three regions D,,D,and Sof figure 1 of Lesson 23. Now, however, t
and uare the variables, however, t and u are the variables x and y positive

constants. We have relation (23.5) of Lesson 23 as before. Again we evaluate
the central double integral by iteration in rectangular coordinates: the other two,

in polar coordinates:

5 2x+2y-1

[[cos™osin?0dof e r T dr< [t e dt[] u ey

2x+2y-1

z ~ ] ~ RV2 .2
<j0 cos**@sin? 149d¢9j0 e'r dr

Now, if we let R become infinite and use Theorems 23.4 and 24.3, we obtain

—B(y X)— F(X+y)_F(x)F(y) O0<x,0<y

This completes the proof of the theorem.
Example 24.1 Evaluate | x*(1-x)’dx

rGrE) 1
rQ 280

Solution: [ x*(@—x)°dx=[,x*(1-x)*"dx = B(5,4) =

Example 24.2 Evaluate l;dx

°3x*(1-x)
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The Beta Function

Solution: I4dx [xta-x k= a2 =SNG e

3x*(1—X) I'@)

Example 24.3 Evaluate [ +/x.(1- x)dx

(3)=4Vr
r(z)=%Jz

Thus J‘:\/;(l— X)dx :%

Example 24.4 Given j — d , show that I'(g)I'(1—gq) =

gin nm gin nmw

Proof: We know,
for0 < x < 00,0 <y < oo,

oo pri
Bx,y) = fu (1+E)*+Y
g—1
(1 + x)2+(1-a) dx=p(q,1-q)
Migir(1- q]
= rm C(q)r(1-q)

Example 24.5 Evaluate I = [~ —=

0 (1+x%)

Solution: Let x* = t,4x*dx = dt
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The Beta Function

2
-= ]
1 ;oo f 4 1 poofa 1 T
[=iftigr =22 g1 _ T
40 1+¢ 4-0 1+t 4sinm 44X
N

Exercises
1L [ (1—1)dt
2. [13ft(1—t)dt

o

3. J,,(a- %]Edr
4, fg_ Vtanx dx
d. _I"E(sin Zx}%dx

6. /7 —

+E{1+2)

7. fﬂm tdt

+ (1+£)%

8 = dt

~rﬁ+ (1+£)%,/1+(1/7E)

- _r[?;(sin 2x)* 1 dx 0<t<co
Keywords: Gamma Function, Beta Function, Polar Coordinate.
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Module 3: Ordinary Differential Equations

L esson 25

| ntroduction

In this lesson we introduce basic concepts of theory of amirdifferential equations.
Formation of the differential equation from a given familyooirves is explained. Differ-
ent types of solutions are defined. The given definitions@pplemented by some simple
examples.

25.1 Differential Equations

An equation involving derivatives or differentials of onemore dependent variables with
respect to one or more independent variables is calledex@iffial equation. An ordinary
differential equation of ordes is defined by the relation

F(t,z,aM 2% 2y =0 (25.1)

where z(") stands for thenth derivative of unknown function:(¢) with respect to the
independent variable For example

d*z  d’x dz\°
it et G A (25.2)
Z—f =z +sinz. (25.3)

25.1.1 Order of a Differential Equation

The order of a differential equation is referred to the hgjlerder derivative involved in
the differential equation. For example, the order of théed#ntial Equation (25.2) is four.

25.1.2 Degree of Differential Equation

The degree of a differential equation is the degree of thadsgorder derivative which
occurs in it; after the differential equation has been maele from radicals and fractions
as far as derivatives are concerned, e.g. in differentiabign (25.2), the degree is one.
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25.1.3 Linear and Nonlinear Differential Equation

A differential equation is called linear if (a) every depentlvariable and every derivative
involved occurs in first degree only, and (b) no product ofedefent variables and/or
derivatives occur. A differential is not linear is calledmioear. For examples, Equation

(25.2) is linear and (25.3) is nonlinear.

25.2 Solution of a Differential Equation

Any relation between the dependent and independent vasablhen substituted in the
differential equation, reduces it to an identity is callesbéution of differential equation.

For exampley = €% is a solution ofy’ = 2y.

25.2.1 Example

Show thaty = A/z + B is solution of
2
y// + (_) y/ -0
T

Solution: We have the differential equation

2
y// n (_) y/ AL §-
T

Also given that

y=Alz+ B.
Differentiating (25.5) w.r.tx

y = —A/a?.
Differentiating (25.6) w.r.tx

Y =2A/23.

Substituting (25.6) and (25.7) into (25.4), we have

24 24
P R

(25.4)

(25.5)

(25.6)

(25.7)
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25.2.2 Complete, Particular and Singular Solutions

Let
F(t, x, W 2@ ,x(n)) =0 (25.8)
be ann-th odder differential equation.

e A solution of (25.8) containing independent constants is callgeneral solution

e A solution of (25.8) obtained from a general solution by ggyiparticular value to
one or more of the independent arbitrary constants is calpedticular solution

e A solution which cannot be obtained from any general sofultip any choice of the
n independent arbitrary constants is caléalgular solution

25.3 Formation of Differential Equations

An n-parameter family of curves is a set of relations of the f¢tmy) : f(z,y,c1,c2,...,cn) =
0}, wheref is real valued function of, y, ¢y, co, ..., ¢, and eachy; (i = 1,2, ...n) ranges over
an interval of real values.

Suppose we are given a family of curves containiragbitrary constants. Then by differ-
entiating it successively times and eliminating all arbitrary constants from the+ 1)
equations we obtain afth order differential equation whose solution is the givamily
of curves. We now illustrate the procedure of forming difetial equations with the help
of some examples.

25.4 Example Problems

25.4.1 Problem 1

Find the differential equation of the family of curves= ¢™*, wherem is an arbitrary
constant.

Solution: We have the family of curves

y=em". (25.9)
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Differentiating (25.9) w.r.t;, we get
y = me™?. (25.10)

Now, we eliminaten from (25.9) and (25.10) and using= log, y, we obtain the required
differential equation as

y =ylog,y.

25.4.2 Problem 2

Obtain the differential equation satisfied by the family iofles 2 + y? = a2, wherea is
an arbitrary constant.

Solution: The family of circles is given as

224 y% = 2. (25.11)
Differentiating (25.11) w.r.t;, we get

r+yy =0,

which is the required differential equation.

25.4.3 Problem 3

Obtain the differential equation satisfied by = ae® + be=* + 22, wherea andb are an
arbitrary constant.

Solution: Given family of curves
zy = ae® 4+ be " + 2. (25.12)
Differentiating (25.12) w.r.t;, we get
xy 4y = ae” —be " + 2u, (25.13)
Differentiating (25.14) w.r.tz and using (25.14), we get
zy’ 42y = (zy — 2?) + 2, (25.14)

which is the required differential equation.
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Remark: From the above examples we observed that the number of @mpiton-

stants in a solution of a differential equation depends ufi@norder of the differential
equation and is the same as its order. Hence a general salofiannth order differential

equation will contaim: arbitrary constant.
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Publisher, Moscow.
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Module 3: Ordinary Differential Equations

L esson 26

Differential Equation of First Order

In this lesson we present solution techniques of diffeedr@quations of first order and
first degree. We shall mainly discuss differential equatidvariable separable form,
homogeneous equations and equations reducible to homagefarm.

There are two standard forms of differential equations &t farder and first degree,
namely,

d
d—y:f(x,y) or  Mdx+ Ndy =0
xr

Here M andN are functions of andy, or constants. We discuss here some special forms
of these equations where exact solution can easily be autain

26.1 Separation of Variables

If in a differential equation, it is possible to get all thenfilionsx» anddz to one side and

all the functions ofy anddy to the other, the variables are said to be separable. In other
words if a differential equation can be written in the foff(w)dz + G(y)dy = 0, we say
variables are separable and its solution is obtained bygriateg the equation as

/F(:C)dx + /G(y)dy =c,
wherec is a integration constant.

26.2 Example Problems

26.2.1 Problem 1

d
Solve 9 _ Y 4 p2eY,
dx
Solution: For separating variables, we rewrite the given equation as

e Vdy = (¥ 4 2?)da.
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Integrating the above equation we have
—e Y =c" 423+,

wherec is an arbitrary constant.

26.2.2 Problem 2

Solve 3e” tan ydz + (1 — %) sec? ydy = 0.
Solution: Separating the variables, we get

3e” sec?y
d dy = 0.
1—e* S tany Y

Integration gives
—3log(1l =€) + log(tany) = logc,

wherec is an arbitrary constant.

26.3 Equations Reducibleto Separable Form

Differential equation of the form
dy _ dy _
%—f(aijby—i-c) or d$—f(ax+by)

can be reduced by the substitutiofn+-by +c=v or ax+by = v to an equation in which
variables can be separated.

26.3.1 Example

dy
Solve e sec(z + y).

Solution: Let, z + y = v so that

dy  dv
T dn 1. (26.1)

Using (26.1), the given differential equation becomes

v =secv + 1. (26.2)
dz
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This equation is of separable form. Thus we have

1 ~ 2cos?(v/2) - 1

dr = dv = =
v ! v 14 2cos?(v/2) — 1

= dv
secv + 1

Further simplifications gives
1 2
de = (1-— 5 sec (v/2) ) dv

Integrating and substituting the valuewgfwe obtainy — tan 1(z + y) = c.

26.4 Homogeneous Differential Equation

A differential equation of first order and first degree is daidbe homogeneous if it can
be put in the form

W fw/o)

These equations can be solved by letiifig = v and differentiating with respect toas

dv dv

v+x%:f(v) = x%:f(v)—v.

Then, separating variables, we have

Integrating the above equation we obtain

logx—i—c:/%,

wherec is an arbitrary constant. The solution is obtained by reptagariablev by /.

26.4.1 Example

Solve the differential equation
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Solution: Since the right hand side of the given equation is function /afalone, the
given problem is homogeneous equation. Substitufjiag= v so that

dy dv
the given equation becomes
dv dr  cosv
v+r— =v+tanv — — = ——dv
dx x sin v

Integrating and substituting the valuegfwe get the solution as

=sin ()
cr =sin =),
x

wherec is an arbitrary constant.

26.5 Equations Reducible to Homogeneous Form

Equation of the form

dy  ax+by+c a , b

- J - e 26.4
dr  dz+Vy+c’ a v ( )

can be reduced to homogeneous form. The procedure is as$ollo

Take
r=X+handy=Y +k

where X, Y are new variables ant # are constants to be chosen so that the resulting
equation inX,Y becomes homogeneous. From above we lave dX, anddy = dY, SO
thatdy/dx = dY/dX. Now the given differential equation in new variables beeam

dX = aX +0bY + (ah + bk +c)

dY ~ dX +VY + (a’h + bk + ) (26.5)

In order to make (26.5) homogeneous, the consiaamd £ must satisfy the following
algebraic equations

ah+bk+c=0 , dh+Vk+d =0 (26.6)

Solving equations (26.6), we obtain

Y 1
:bc be k:ca ca (26.7)

= 7
abl —a'b abl — a'b
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providedab’ — a'b # 0. Knowing h andk we have
X=x—h, Y =y—k. (26.8)

The Equation (26.5) now reduces to
dY aX +0b(Y/X)
dX a+v(Y/X)
which is a homogeneous equationirandY which can be solved by substituting X =
v. After getting solution inX andy, we removeX andY using (26.8) and obtain solution
in terms ofz andy.

(26.9)

26.5.1 Example

Solve the differential equation
dy (z+y+4)
dr  (z —y—6)

Solution: Letz = X +h, y=Y +%k, sothat dy/dr = dY/dX and using this, the
given differential equation reduces to

dyy #26  aslvhig

dv . X—-Y+(h—k—6)
Choose: andk such that: + £k +4=0, h—k—6=0,and by solving, we get=1 and
k = —5. New variables becomes =z — 1 andY = y + 5. Using this into (26.10), we

(26.10)

obtain
Yy 1+Y/X
X~ 11 v/X (26.11)
Substituting
day dv
the Equation (26.11) becomes
dX 1—w dv vdv
X 1+02 U_l—l—Ude_m' (26.12)

Integrating the above equation, we get

log X = tan" v — (1/2)log(1 + v*) + (1/2) logc
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Further simplifications gives
2log X 4+ log(1 +Y?%/X?) —loge = 2tan  H(Y/X), as v =Y/X
Thus, we get

X24y2= Ce2tan_1(Y/X)

ReplacingX andY asX =z — 1 andY = y + 5 we obtain the general solution as

(CL’ B 1)2 + (y + 5)2 _ Ce2tan71((y+5)/(:r—1)).
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Module 3: Ordinary Differential Equations

L esson 27

Linear Differential Equation of First Order

In this lesson we shall learn linear differential equationdirst order. Such equations
are very often used in applications. Solution strategiesobfing such equations will be
discussed. Further a another special form of differentyalagion which can be reduced
to linear differential equation of first order will be studie

27.1 Linear Differential Equation

A first order differential equation is called linear if it cae written in the form

W\ Py = Q) (27.1)

whereP and@ are constants or function afonly.

A method of solving (27.1) relies on multiplying the equatioy a function called inte-
grating function so that the left hand side of the differainéiquation can be brought under
a common derivative. Suppo&&r) is an integrating factor of the (27.1). Multiplying the
(27.1) byR(x), we obtain

R(x);l—z + P(z)R(x)y = Q(x)R(x) (27.2)

Suppose, we wish that the L.H.S of (27.2) is the differerd@@fficient of some product.
Clearly, the termR(:c)j—g can only be obtained by differentiating the prod&ct)y(z). In
other words, we wish to have

dy d

R(z)7— + P(2)R(2)y(z) = —(R(z)y(z)). (27.3)
This implies
dy ro ™ 4 B
R(x) 22 + P@)R(x)y(x) = ()2 +y(a) =
On cancelling the first term on both the sides we obtain
P(z)R(x)y(x) = y(x)% = d—; = Rdx.
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Linear Differential Equation of First Order

Integrating the above equation, we gtk = [ Pdz. Note that the constant of integration
is not important here because the integrating factor wilubed to multiplying both the
sides of the differential equation and therefore it will lzcelled. Thus, an integrating
factor (I.F.) of the differential Equation (27.1) is

R = ¢l Pdz (27.4)
The Equation (27.2) now reduces to
d
@( y) = QR

By integrating above equation, we have

Ry = /Rde +c,

or
yel Pde — /Qef Pdzgy + ¢,

which is required solution of given differential equatiddereC is the constant of inte-
gration.

27.2 Example Problems

27.2.1 Problem 1

d
SO|Vexcosxd—y +y(zsine +cosz) =1, 0<z<m/2.
T

Solution: We rewrite the given equation as

dy 1, secx
d—x+(tanx—|—g)— —
An |.F. of the given differential equation is

[(tanz+21)dz _ logasec

(& = Irsecx.

Hence, the required solution is
yrsecxr = /sec2 xdx + ¢,

or

yrsecx = tanx + ¢,

where,c is an arbitrary constant.
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27.2.2 Problem 2

Solve (1 + xz)g—i =z(1 —vy).

Solution: Rewriting the given differential equation in standard form

dy x x
ar 2Y = 2
de 14+ 1+

The L.F. is
LF = Tr® —edln(e®) /1702

The solution is

\/ 2 _ r _ 2y—1/2
yv1i+zx —/m+c = y=1+c(l+2%)

Herec is an arbitrary constant.

27.3 Equations Reducibleto Linear Form

A equation of the form

Py Piy) = o, (27.5)

dx
can be reduced to linear form, by substituting) = v so thatf’(y)g—g = dv/dx. The
Equation (27.5) then becomes

dv/dx + Pv = Q, (27.6)

which is linear inv andz and its solution can be obtained with the help of I.F. as leefor
Thus, we have an |.F.z/ »¥ and the solution is

vel PAT — /Qef Pdz gy 4 c.

Finally, we replace by f(y) to obtain the required solution.

27.4 Example Problems

27.4.1 Problem 1

d
Solve d_y cosy + 2xrsiny = .
T
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Solution: Substitutionsin y = v which impliescosy % = v reduces the given differential
equation to

v
dx+ xTv X

This is a linear differential equation of first order and is ise/ 224 — ¢*”. The solution
of the equation in is given by

2 2 1 2
ve’ :/xex dz + ¢ :>v:§—|-ce_‘r.

Replacingy by sin y we get the required solution as
1
y =sin ! <§ + ce_IQ) :

27.4.2 Problem 2

d
Solve & 4 zsin 2y = a3 cos? y
dx
Solution: Dividing the given differential equation hys? y, we obtain

d
sec? y—y + 2z tany = .
dz

Puttingtan y = v S0 thatsec?y % = 4V, Hence the above equation becomes

d
£+2xv =23,

which is linear. Its I.F. is** and its solution is given as follows

2 2
vet = /em 3dx + ¢,

1
ve® = §( 2 _ 1)6I2 +c.

Replacingy by tan y we obtain the required solution.

27.5 Bernoulli’s Equation

An equation of the form

dy/dx + Py = Qy" (27.7)
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where P and @ are constants or function af only andn is constant except and1 is
called Bernoulli differential equation. This equation aasily be solved by multiplying
both sides by~ as

y "dy/dx + Py'™" = Q (27.8)

Settingy! " = v, so thaty "% = (;n)%, the Equation (27.8) becomes

dv/dx + P(1 —n)v =Q(1 —n),
which is linear inv andz. Its I.F. ise/ (1-m)d= and hence the required solution is

yl—nefP(l—n)d:r _ /vQefP(l—n)dmdx_'_C7

wherec is an arbitrary constant.

27.5.1 Example

S()|Vex@ +y=y’lnz.
dz

Solution: Rewrite the given equation

e AT ML S (27.9)
de = =x

Puttingy ! = v so that-y 2% = 4v. Then the Equation (27.9) gives

T

— — —v=gz'lnz (27.10)

The I.F. of the differential Equation (27.10) ds / zdv = 1, and hence the solution be-
comes

1
v— = —/x_2 log zdzx + ¢
x

or by replacing by y~! we get
y l=1+Inz+ cx,

wherec is an arbitrary constant.
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Module 3: Ordinary Differential Equations

L esson 28

Exact Differential Equation of First Order

This lesson provides an overview of exact differential eéguma A necessary condition
for a differential equation to be exact will be derived. Tliffierent solution techniques
will be discussed. Several examples to clarify the idealbeikupplemented.

28.1 Exact Differential Equation of First Order

If M andN are functions ofr andy, the equationV/dz + Ndy = 0 is called exact when
there exists a functiori(z, y) such that

d(f(x,y)) = Mdz + Ndy,

or equivalently

gclx o gdy = Mdx + Ndy.
dy ox

28.1.1 Theorem

The necessary and sufficient condition for the differergtplation

Mdz + Ndy =0 (28.1)
to be exactis
oM  ON
o = or (28.2)

Proof: First we proof that the condition (28.2) is necessary. Tow@roe let the Equation
(28.1) to be exact. Then, by definition, there exi&ts y) such that

9 o+ ﬁdy = Mdx + Ndy. (28.3)
dy Ox
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Equating coefficients afz anddy in Equation (28.3), we get

=9 (28.4)
dy
N9 (28.5)

Ox
To eliminate the unknowrf(z,y) from above equations, we assume thatzhd order
partial derivatives of are continuous. We now differentiate (28.4) and (28.5fw:rand

y respectively as
oM O*f ON  O°f
Oy  Oydr’ Or  Oydx
This implies
oM 0N
dy O

Thus, if (28.1) is exact)/ and N satisfy (28.2).
Now we show that the condition is sufficient. Suppose (28a$rand show that (28.1)

is exact. For this we find a functiof(z, y) such that
d(f(z,y)) = Mdx + Ndy.

Let g(z,y) = [ Mdx be the partial integral o8/ such thatg—g = M. We first prove that
X

(N - @) Is function ofy only. This is clear because

dy
O (Ny_09\_ON _ 9y
ox oy ) —0x  Oxdy

2 2
Assuming&c;y = ;;gx and using Equation (28.2) we get
2
0 (N @) _ON 0%y

o _&y _%_&y@x
_ON 8(89)_8_N_8_M_0
 ox oy

S ox Oy o
Take, f(z,y) = g(z,y) + [(N — g—g)dy. Hence taking total differentiation of this equation

gives
99 99 4w+ 99 4y 1 Ny — g—zdy,

df = dg + (N — Zydy =
f =dg + ( ay)y pe o
%9\ 4w + Ndy = Mdz + Ndy.

= (==

ox
Thus, if Equation (28.2) is satisfied, Equation (28.1) is xaceequation.
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28.2 Example Problems

28.2.1 Problem 1

Solve(z? — 4xy — 2y?)dx + (y* — 4oy — 22%)dy =0 .

Solution: Comparing the given equation wittidz + Ndy = 0, we have

M = (22 — dzy — 2¢%), N = (y? — dzy — 22?)
Therefore
OM 4y = N
ay )
Hence, the given equation is exact and hence there existetdn f (z, y) such that
=4 o, _
d(f(z,y)) = axdx + 8ydy = Mdz + Ndy

which implies

% = M(z,y) and % = N(z,vy)

Integration of the first of above equations with respeat gives

1
5 gxg -~ 2x2y —, 2y2x + c1(y)

wherec (y) is an arbitrary function of only. Differentiating the abov¢ with respect to
y and usingg—‘g = N(z,y) we get
of

ol —2¢% —day + ) (y) = +y* — dzy — 222
Y

This implies
3
2

y
Aly)=y" = aly) = 3 T

Hence the solution is given by
fla,y) =c3 = a° —6ay(z+y)+y° =c

Herec,y, c3 andc are constants of integration.
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28.2.2 Problem 2

Determine whether the differential equation+ siny)dz + (z cosy — 2y)dy = 0 is exact
and solve it.

Solution: For given equation we have

M(z,y) = (x+siny) and N(z,y) = (xcosy — 2y) (28.6)
Now we check
oy L
Hence the given differential equation is exact. For thetsmiuve seek a functiori(z, y)
so that
of

. of
i (r +siny) and o (xcosy — 2y)

From the first relation we get

2
T g
flz,y) = o +xsiny + c1(y)

Differentiating w.r.t.y and using the second relation of (28.6) we get
zcosy+ci(y) =zcosy—2y = dy)=-2u=cy)=—-1y>+c

Therefore, we have
2

f(x,y) = % +wsiny —y° + ¢
Then the solution of the given differential equation

2
X .
flz,y)=c3 = ?+xsmy—y2:c.

28.2.3 Problem 3

Solve the differential equatiaiay?s — 2y3)dx + (4y3 — 6y’x + 2y2?)dy
Solution: First we check the exactness of the equation by

M AN
T Apy — 6yt = =
gy =0y =
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So the equation is exact. Then, there exists a fungtieny) such that

of _ oo o3 of _ 3 9 2
ax—(2yx 2¢°) and By_(4y 6y“x + 2yz°)
This gives
0
fla) = WPt =20 +aly) = G = (250 = 6my®) +l(0)
This implies

dly) =4y = al) =y'+e

Hence the solution is

flz,y)=c3 = y2x2 — 2xy3 + y4 =c.

28.2.4 Problem 4

Solve that the differential equatidbwy + y?)dx + (2% + zy)dy = 0. is not exact and hence
it cannot be solve by the method discussed above.

Solution: For the given differential equation we have

Y 25 A M) ik = VY
oy ox
Sinceaﬁ—M = %—N the given equation is not exact.
Y T

Now we see that it cannot be solved by the procedure desqriigetusly where we seek
a functionf such that

of _ 3zy +y> and Of _ 2y Ty (28.7)
ox oy

Integration of the first relation gives

3
fla,y) = 5932?; +2y? + c1(y)

wherec;(y) is an arbitrary function of) only. Now we differentiate the above equation
with respect tg; and set the resulting expression equalg’tery from the second relation
of (28.7) as

3
§x2 + 22y + ¢ (y) = 2° + xy
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This provides

1 2

aly) = ot T

Since the right side of the above depends @s well as ony, it is impossible to solve this
equation fore; (). Thus there is ng(x, y) exists and hence the given differential equation

cannot be solved in this way.
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L esson 29

Exact Differential Equations: Integrating Factors

In general, equations of the typé(z,y)dz + N(z,y)dy = 0 are not exact. However, it
is sometimes possible to transform the equation into antekterential equation multi-
plying it by a suitable functiori(z,y). That is, if I(x,y) is an integrating factor then the
differential equation

becomes exact. A solution to the above equation is obtaipesblving the exact differ-
ential equation as in the previous lesson. Note that thengrepiation may have several
integrating factors. This is exactly the procedure we haexldor solving linear differ-
ential equations in earlier lesson. Here we deal with moreeg# differential equation.

29.1 Rulel: By Inspection

There is not much theory behind finding integrating factonnspection. This method
works based on recognition of some standard exact diffiaerthat occur frequently in
practice. The following list of exact differentials woule louite useful in solving exact
differential equations:

(1)  d(ry) = ydz + xdy
(ii) d <g> _ vy —ydr o (E) _ ydz —wdy

s 3;2 Y y2

(iii) d (n2) = rdy —ydr o (ln f) _ ydw — xdy
v Y ) Ty
(iv) d <arctan Q) - % or d <arctan E) — w
. Y y v+
d d
(v) d(lnzy) = yax + xray
Ty

29.1.1 Example

Solve the differential equation y(y? + 1)dz + z(y* — 1)dy.
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Solution: The given equation can be rewritten as
v (ydx + xdy) + ydx — xdy
This is further rewritten as

(yd + xdy) + (M) _0

y2

Using standard differential forms given above we get

d(zy) +d (E) =0
Yy
Integrating the above equation, the desired solution isrgas
xy2 +xr=cy

Herec is an arbitrary constant.

29.2 Rulell: Mdz + Ndy = 0 ishomogeneousand Mz + Ny # 0

. : 1
If the equationV/dz+Ndy = 0 is homogeneous andz+Ny # 0, then/(z,y) =

_ _ _ (Mz + Ny)
IS an integrating factor. In order to prove the result, wednweshow that

Mdx + Ndy .

— = me functionr an

EES d (some function: andy)

Rewriting Mdxz + Ndy as

de+Ndy:%{(Mx+Ny) (i—x%—%)jL(Mx—Ny) (i—x—%)}

Multiplying by proposed integrating factor we get

Mdz+Ndy 1 f(de dy\  (Mz—Ny) (de dy
Mz + Ny _2{(x+y)+(Mx+Ny) x oy (29.1)

Given thatV/ (z,y) andN (x, y) are homogeneous functions of some degree., M (tz, ty) =
t"M(z,y) andN(z,y) = t"N(z,y). Then

M <§1) - M Gx ly) = My = My =M <§1)

Yy y"
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Similarly, we get
N(z,y) =y"N (E, 1)
Yy

Now consider

(= gy _ V"M (5.1) —vo (5)

(Mz + Ny) ynaM (%, 1) +y"yN (%7 1)

SIS

QLUUR |eIr

Going back to the Equation (29.1), we have

% _ % {d(ln(:cy)> +f (g) a (m g)}

Rewriting f (z/y) = f (exp(In(z/y))) and definingy(z) := f(exp(z)), the above equation
becomes

Mdx + Ndy

Vv = 3 {atma) + g tuiesmya (m )]

Hence, we have shown that

Mdx + Ndy 1 1 x x
——— =d =1 = In—)d(Iln—
Mz + Ny {2 n@y”?/g(ny) <ny)}

Thusm Is an integrating factor of the homogenous differentialagmun M dz +
Ndy = 0.

29.2.1 Example

Solve the differential equation (z%y — 22y?)dx — (23 — 322y)dy = 0

Solution: The given equation is a homogeneous differential equaG@mparing it with
Mdzxz + Ndy = 0, we haveM = z?y — 2zy? andN = — (23 — 322%y). Since

Mz + Ny = (22y — 220y x — y(2® — 32%y) = 2%y # 0,

the integrating factor is '
1

(Mz + Ny)  x2y?
Multiply by the integrating factor, the given differentietjuation becomes

(1/y —2/x)dx — (x/y* = 3/y)dy = 0
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This is now exact and can be rewritten as
ydr — xdy x

Y

2 3
— —dx +

3 —dy=0 = d(
Y z Y

) — gdx + §aly =0
T Yy
Integrating the above equation we obtain the desired solats

xr—2ylnz+3ylny =cy

29.3 Rulelll: Mdx + Ndy = 0 isof theform fi(zy)ydz + fo(zy)xdy = 0

If the equationV/dz + Ndy = 0 is of the formf; (zy)ydx + fo(zy)xdy = 0, then

(Mz — Ny)
IS an integrating factor providetdz — Ny # 0. Similar to rule 11 we now show that
Mdzr + Ndy .
Ny d (some function: andy)

Again, rewritingMdz + Ndy as

1 d d
Md:)s+Ndy:§{(Mx+Ny) <§+?y)+(Mx—Ny) (d_x_@)}

Now dividing by Mz — Ny we get

Mda + Ndy 1 {(Mx+Ny) (d_x+@> . <dx dy)}

Mx — Ny "9 Mx — Ny x Y

Using M = fi(zy)y andN = fo(zy)z we obtain

Mdz + Ndy _ 1 f fi(zy) + folzy) , 0t
o Ny ‘2{f1<xy>—f2<xy>d“ ””(l y)}

_ Nilzy) + folry)
fi(zy) = fa(zy)

iy = 3 e v (D) = 5 fomeninen) +d () |

This shows that

Let f(zy) : andg(z) := f(exp(z)), the above equation reduces to

Mdx + Ndy 1 1 x
——— 2 =d|= | d(l —(In—
v —al; [atmanatay + ;5 (m2)]
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29.3.1 Example

Solve y(z2y? + 2)dx + x(2 — 22%y?)dy = 0.

Solution: Comparing with\/dz+Ndy = 0, we haveVl = y(22y*+2) andN = z(2—2x%y?).
The given equation is of the form

fi(zy)ydx + fo(xy)xdy =0

and we have
Mz — Ny = zy(ay? +2) — zy(2 — 22%%) = 3233 # 0

Therefore, multiplying the equation hy3z3y3, we obtain
(1/3z + 2/ (32%y?))dx + (2/(32%y3) — 2/3y)dy = 0

This is an exact differential equation which can be solvetth Wie technique discussed in
previous lesson.

29.4 RulelV: Most general approach

Now we discuss the most general approach of finding integyditinction. The idea is to
multiply the given differential equation

M(z,y)dz + N(z,y)dy = 0 (29.2)
by a functioni(z,y) and then try to choosEz, y) so that the resulting equation
I(z,y)M(z,y)dz + I(z,y)N(z,y)dy =0 (29.3)
becomes exact. The above equation is exact if and only if
(M) O(IN)

T (29.4)

If a function I(z, y) satisfying the partial differential Equation (29.4) canfbend, then
(29.3) will be exact. Unfortunately, solving Equation (28.is as difficult to solve as the
original Equation (29.2) by some other methods. Theretwhdle in principle integrating
factors are powerful tools for solving differential equeis, in practice they can be found
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only in special cases. The cases we will consider are: (integrating factor that is
either as function of x only, or (ii) a function of y only.

Let us determine necessary conditions\émndN so that (29.2) has an integrating factor
I that depends om only. Assuming thaf is a function of x only, then Equation (29.4)
reduces to

IM, = IN, + N% = % = 7]]\4@,;7 I
If (M, — N;)/N is a function ofz only, say f(x), then there is an integrating factor
that also depends only anwhich can be found by solving (29.5) ag:) = ¢/ /(®)dz A
similar procedure can be used to determine a condition undieh Equation (29.2) has

an integrating factor depending only gnTo conclude, we have:

(29.5)

If N <—8y . ) is function ofz alone sayf(x), theni(z) = e is an I.F.
1 (ON MY o finey _ ol i
If i < o oy ) is function ofy alone sayf(y), theni(y) = e isan |.F.

29.5 Example Problems

29.5.1 Problem 1

Find an integrating factor of (22 + y? 4 2)dx + zydy = 0 Solution: Comparing with
Mdz + Ndy = 0, we have

M = (2® + y* + z) andN = zy

Further, note that

dy ox
is a function ofz alone. Hence, the integrating factor of the given probles 167 = 7.

i@M ON 1
N T

29.5.2 Problem 2

Find an integrating factor of (2zy*e? 4 2213 + y)dx + (z?y*e¥ — 2%y? — 32)dy = 0
Solution: Compare withV/dz + Ndy = 0, we get

M = (2zy*e¥ 4 221 4+ y) andN = (2?y*e¥ — 22y? — 31)
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Also, note that

Ay ox

1 (8]\7 8M) 4
Y

i _

is a function ofy alone. Hence the integrating factor of the given problesh is/¥% = 1/4*.

Suggested Readings

Boyce, W.E. and DiPrima, R.C. (2001). Elementary Differ@rfEquations and Boundary
Value Problems. Seventh Edition, John Willey & Sons, In@wNrork.

Dubey, R. (2010). Mathematics for Engineers (Molume Il)rdéa Publishing House.
New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scieirdiisd Engineers. First Indian
Edition. Viva Books Pvt. Ltd. New Delhi.

Raisinghania, M.D. (2005). Ordinary & Partial Differentiaquation. Eighth Edition. S.
Chand & Company Ltd., New Delhi.

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.

Arfken, G.B. (2001). Mathematical Methods for Physicigtgth Edition, Harcourt Aca-
demic Press, San Diego.

Grewal, B.S. (2007). Higher Engineering Mathematics. Fmmth Edition. Khanna
Publishilers, New Delhi.

Piskunov, N. (1996). Differential and Integral Calculusiiyme - 2). First Edition. CBS
Publisher, Moscow.

7 www.AgriMoon.Com



259

Module 3: Ordinary Differential Equations

Lesson 30

Linear Differential Equations of Higher Order

In this lesson we discuss linear differential equation ghler order with constant coeffi-
cients. In particular, we shall learn about the technigddsmding solutions of homoge-
nous equations. Different cases will be considered witthp of several examples.

30.1 Linear Differential Equation

In a linear differential equation, the dependent variabid @s differential coefficients
occur only in the first degree and are not multiplied togetiidre general form of the
equation is

dny dn—l dn—2

@+a1(x)?y+a2(a;)Wf;+...+an(x)y:F(x), (30.1)

whereay, as, .. .,a, and F are either constants or functionsobnly. If the right hand
side, i.e.F(z), is identically zero, the equation is said to be homogensatherwise it is
called nonhomogeneous. Before we discuss some particagas ©f the above equation
we state two facts about the solution of a linear homogendifigsential equation. The
first says that if we know: solutionsy,, o, ..., y, Of the linear homogeneous equation,
then any linear combination= cyy1 + c2y2 + ... ¢y, IS @lso a solution for any constants
c1,¢ca2,...,cn. This can easily be proved by substituting= ciy1 + coyo + ... ¢y, INtO
the equation and using linearity of the equation. The seampadrtant result concerns
about the general solutions (solution containing all sohs) to the linear homogeneous
equation. This result says that any solution is some lineantgnation ofyy, 4o, . . . , v, for
some suitable values of constants, .. ., ¢,. However, this is not true for any combina-
tion of solutions but is true if the solutions, v», . . ., y, are linearly independent.

30.2 Linear Differential Equation with Constant Coefficients

An equation of the form

A" n—1 n—2

Yy Y Y _
Ton T O T T Ay e any = F(x), (30.2)
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wherea,, as, . . ., a, are constants, is called linear differential equation wahstant coef-

n

ficients. Using the symbols™” := j?, the Equation (30.2) becomes

(D" + a1 D" L+ aeD" 2 + .+ a,)y = F(x), (30.3)

Further definingf(D) := D" + a;D" ! + aaD" % + ... + a,, We can rewrite the given
differential equation in a more compact form g9)y = F(z). Here f(D) acts as oper-
ator ony to yield F(x). The general solution of (30.2) can be written as the sumef th
general solution of the corresponding homogeneous equattereed as complimentary
function (C.F.), and a particular solution or sometimegechparticular integral (P.I) of
nonhomogeneous equation. Thus

y=C.F.+ P.I. (30.4)

Note that the C.F. involves arbitrary constants and P.I. does not involve any arbitrary
constant. It is readily evident thatin (30.4) is the general solution of the given non-
homogeneous differential equation because it satisfiegitles differential equation as
f(D)(C.F.+ P.1.)= f(D)(C.F.)+ f(D)(P.I.) = 0+ F(z) and it has: arbitrary constants.

30.3 C.F. of a Differential Equation

By definition, C.F. of (30.2) is the general solution of

(D" +a; D" '+ aeD" 2 + .. +a,)y =0 (30.5)
To solve Equation (30.5), we seek a function which satisfiesabove equation. One
intelligent guess of such a function is the exponential fiwme=""*, wherem is a constant.

Differentiations of this exponential function are just stant multiples of the original
exponential. If we substitute this function into the Eqaat{30.5), we obtain

(m"™ + aym™ 1t + aom™ % + . 4 a,)e™ = (30.6)

Since the exponential function is never zero, we can divide last equation by™*.
Thus,y = ¢™* is a solution to Equation (30.5) if and only:if is a solution to the algebraic
equation

m" +am™  +aom™ 2+ ... +a, =0 (30.7)

Equation (30.7) is called the auxiliary equation (A.E.) baracteristic equation (C.E.) of
the differential Equation (30.5).
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30.4 Case I: A.E. has real and distinct roots

If m1,ms,ms,...,m, be real and distinct then the solutiogig, ¢mm . ™% gre lin-
early independent and the general solution of the given lgemeous differential equation
becomes

mix mox ms3x mnT
y=cre " +coe"?" 4 c3e" + ...+ cpe’ Y,

wherecy, e, ..., ¢, @re arbitrary constants.

30.4.1 Example

Find the general solution of the differential equation (D3 4 6D? 4+ 11D + 6)y = 0.

Solution: The A.E. is(m? + 6m? + 11m + 6) = 0. The roots aren = —1, -2, —3. Hence
the required solution ig = cie™® + coe ™2 + c3e32,

30.5 Case ll: A.E. has repeated real roots

Let m; = mo are repeated roots of the A.E. Then, we have 1 linearly independent
solutions. It can be shown that a simple choice- ze™* is also a solution which is
independent to the rest- 1 solutions. Thus, the general solution of the given difféisgn
equation is given by

y = (c1 + cox)e™ + 3™ + 4 cpe™n®

The above idea can be further extended by taking solutiens’, z2em™*, ... gl=lemz
if the rootm; is repeating—times.

30.5.1 Example

Find the general solutionto (D* +2D3 — 3D? — 4D + 4)y = 0.
Solution: The A.E. of given equation is
(m* 4 2m3 — 3m? —4m +4) =0

The roots of the A.E. ares = 1,1, —2, —2. The required solution ig = (¢; +cox)e” + (c3+

cyw)e 2",
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30.6 Case llI: A.E. has complex roots

If m1 = a+iB andms = o — i3, then the solutiong™* ¢™2% . . ™% gre linearly
independent and the general solution of the given homogeneifferential equation is
given by

y = e + che2 + 3T + L+ e
The above solution can be simplified as
y = e (cos fx + isin fx) + che™ (cos fx — isin fx) + c3e3* + ... + ¢ ™",
Defining new constants = | + ¢, andes = i(c; — ¢2), the general solution becomes
y = e (c1 cos fx + cosin fx) + 3™ + ...+ cpe™m?.
Similar to the case Il, the solution for repeated complexg@an be found, see example

below.

30.6.1 Example

Find the general solution to the differential equation (D? + 1)y = 0.
Solution: The A.E. and its roots are
(m?+1)2 =0, and thereforem = +i, +i.
This is the case of repeated complex root, so case Il and kasalbe combined to give

the desired solution as= (c; + c2z) cos x + (c3 + c4z) sin .

30.7 Miscellaneous Problems

30.7.1 Problem 1

Find the general solution of the differential equation (D? 4+ 3D? +3D + 1)y = 0.

Solution: The A.E. and its root are given kiy» + 1) = 0 andm = —1, -1, —1. Therefore,
the required solution ig = (c; + coz + c32?)e ™.
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30.7.2 Problem 2

Find the general solution of (D3 — 8)y = 0.

Solution: The A.E. of the given equation {g* — 8) = 0. Its root arem = 2, —1 4 i/3.
The required solution ig = c1e** + e~%(cy cos V/3x + c3sin v/3z).

30.7.3 Problem 3

Find the general solution of the differential equation (D? — 2D + 5)%y = 0.

Solution: The auxiliary equation igm? — 2m + 5)2 = 0. Its roots aren = 1 4 24,1 + 2i
Hence the required solution 4s= e” [(¢; + cox) cos 2z + (3 + c4x) sin 2] .

30.7.4 Problem 4

Find the general solution of (D? + D +1)%(D — 2)y = 0.

Solution: The A.E. of the given equation ign> + m + 1)?(m — 2) = 0. lts roots are
m=—L+i¥3 —1+i¥3 2 Hence, the desired solution is

3 3
y = c1e?® + N i (c2 + c3x) cos il (cq + c5x) sin gx

30.7.5 Problem 5

Find the general solution of the differential equation (D? + 1)3(D? 4+ D + 1)%y = 0.

Solution: The A.E. of given equation is

(D*+1)*(D*+D+1)?=0,

1 1 . .
The roots aren = +i, +i, +i, —3 + z? —3 + z? Therefore, the desired solution is

y =(c1 4 o + c32?) cosx + (cq + c5x + cga?) sinx

3 3
tea® (c7 + cgx) cos DR + (c9 + c107) sin gx
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L esson 31

Linear Differential Equation of Higher Order

In connection to the last lesson, we discuss solution metlogies of getting particular
integral of the linear differential equations of higher erdIn particular, in this lesson
we present operator method which is somewhat easier tham oththods for finding
particular integrals.

31.1 Determination of Particular Integral (P.I.)

As we have seen in the earlier lesson that a general nhonhaoraogs linear differential
equations with constant coefficients can be written in dper@rm asf(D)y = F(x).
The operator]/f(D) is called inverse operator which gives a particular integiaen
operated on both the sides of the given differential equatitence, a particular integral
of the given differential equation is given #ﬁ)F(x). First we give a rather general idea
of getting a particular integral with this method and thestestsome other useful direct
results. Note that the operatpfD) can be expressed 88 — a1 )(D —a3) ... (D —a;,) and
thus a particular integral is given as

1 1 1 1

tEAbout fory (31.1)

We give a general idea of evaluating an expression of theﬁlge;F(x). This procedure
can be repeatedly applied to find a particular integral (3 Hbwever, applicability of this
method depends upon the formofz).

We give a general theorem that can be applied to any problefmfting particular inte-
gral of a differential equation.

31.1.1 Theorem 1

If F(z) isfunction of z and « is a constant, then

1
D —«

Flz) = e / Fz)eda.
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Proof: Let us assume that

y=p5 )
On operating D — «) both sides, we get
_ dy _
(D-ay="F() = -~ -ay=F(z)

The above equation is a linear differential equation of brster whose integrating factor
is e~ Jadz — c—ar_Hence, the solution is given by

ye M = /F(x)e_axdx = y= eO‘I/F(x)e_‘mdx

Since our interest is finding a particular integrals, thestant of integration is dropped.
Thus,

1
D —«

F(z) = &2 / F(z)e % dz. -

Now we state some useful result those will be used to find Pdexain special forms of

31.1.2 Theorem 2

If o isa constant, then f(D)e** = f(a)e™”

Proof: We know thatDe®® = ae®® and similarlyD?e®® = o2¢®*. With induction we can
prove thatD"e** = oe®® for any natural numbeti. This proves the result(D)e** =

fla)e*®. [

31.1.3 Theorem 3

If « isa constant and g(z) isany function, then f(D) (e**g(x)) = e** f(D + «)g(x)

Proof: We know thatD (e**¢(z)) = ae**g(z) +e** Dg(z) = e**(a+ D)g(z). Similar to the
proof of previous theorem we can prove with induction that**¢(z) = e**(a+ D)"g(x)
for any natural numbet. This proves the resuft(D) (e**g(z)) = e** f(D + «)g(z). This
result is known as shifting property of operafdn). n
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31.1.4 Theorem 4

If « and 3 are arbitrary constants, then

f(D¥)sin(azx + B) = f(—a?)sin(az + B3) and f(D?)cos(ax + ) = f(—a?) cos(azx + )

Proof: It can easily be verified thd?sin(az + 8) = —a?sin(ax + ) andD? cos(az + ) =
—a?cos(ax + ). In other words, we can replade® by —o? and this proves the desired
result. ]

Now we describe the method for some special fornt' @f).

31.2 Rulel: F(x) isof theform e

We know from Theorem 31.1.2 th&{(D)e** = f(a)e**. Operating on both sides by
1/f(D) we get

This implies that ] -
mfﬂam = m@am, pr0V|d6d f(Oé) 7£ 0

If f(a) =0, then(D — «) is a factor off (D), sayf(D) = (D — a)g(D). Then

L e _ 1 Lea:c _ 1 Lea:c i o
0 T a0 D-aga’ Provided gl #0

Now using Theorem 31.1.1, we get

1 11 1
D) gle)(D-a)  gla)

In caseg(a) = 0 then, sayf(D) = (D — «)?h(D). In this case we get

1 1 1 o 1 22 o .
me NOICE a)26 = mge provided h(«a) # 0

Again, if 2(a) = 0, the same procedure can be repeated. To conclude, we h&elidine
ing results:

(i)

f(lD) e = f(la) e, wheref(a) # 0
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(i) If f(a) = 0, then f(D) must posses a factor of the typ® — «)", say f(D) =
(D — a)"g(D) whereg(a) # 0. Then the following formula is applicable
X

1 T
ar _ 2

(D — oz)T€ rl

ax

31.3 Example Problems

31.3.1 Problem 1

Find the general solution of the differential equation (D? — 3D + 2)y = €32,
Solution: The auxiliary equation is
(m?>=3m+2)=0 = (m—-1)m-2)=0 = m=12
The complimentary function is given as
CO.F: = c1€® + cpe®®
The particular integral is

5 R S-S S—

DA BT W £ L RoLL? 2

AN 1
The general solution ig} = ¢;e® + c2e?® + 56395.

31.3.2 Problem 2

Solve (4D? — 12D + 9)y = 144¢37/2
Solution: The auxiliary equation is
(4m* —12m+9)=0 = m=3/2,3/2.
The complimentary function is
C.F. = (c1 + cx)e®/?
The particular integral is

plL— 1M wp M1 g6 s

2D—3)2° T~ 4 (D-3/22" 3
The required solution isj = (¢; + cox)e?™/2 + 3655—!2@335/2.
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31.4 Rulell: F(z)isof theform cosax Or sinazx

We expresg (D) as a function of>?, sayf(D) = ¢(D?). From Theorem 31.1.4 we know

thate(D?) sin(az + B8) = ¢(—a?) sin(az + 3). Applying [¢(D?)]~! both sides we obtain
sin(ax + ) = ﬁqb(—az) sin(ax + )

If ¢(—a?) # 0, we can divide the above equation di-a?) to get

sin(az + ) = sin(az + )

1 1
¢(D?) ¢(—a?)

Similarly,

. cos(ax + ) = cos(ax + (), provided ¢(—a?) #0

1
¢(D?) ¢(—a?)
In case,¢(—a?) = 0, we can rewritesin(az + 8) = Im(e**+8)) and cos(az + 3) =
Re(e'@=+5)), Now case | can be applied as

ﬁsin(aaﬂ-ﬂ) ~ Im (ﬁe«aﬂm) - (ﬁeﬂmm) provided f(ia) # 0

Similarly,

cos(az + ) = Re ( ei(o‘erﬂ)) provided f(ia) # 0

1 — & =
f(D) f(icx)

31.5 Example Problems

31.5.1 Problem 1

Solve the differential equation (D? + 1)y = cos 2.

Solution: The characteristic equation of the corresponding homagenequation is
(m*+1)=0 = m=dki

Hence, C.F= (c1 cosz + co sinz). The particular integral is given by

1 1
Pl = DTHCOSQZ’ = mcos2x = _—SCOSQZ’.

: . 1
The required solution igj = (¢1 cosz + cosinx) — 3 o8 2.
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31.5.2 Problem 2

Solve the differential equation (D? — 4D + 3)y = sin .

Solution: The roots of the characteristic equations arand3. The complementary
function isC.F. = c1e® + c2e3*. The particular integral is

1 .
Pl = m S xr

ReplacingD? by —1, we get

1
24D

Again, replacingD? by —1, we obtain

1 1 11+42D
21—2D 21 —4D2

P.IL

sinx =

1 1
Pl = 1—0(1 +2D)sinx = E(sinx+ 2cosx)

Hence the complete solution is
1
y = c1e” + c2e>® + E(Sinx +2cosx),

wherec; andc; are arbitrary constants.
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Module 3: Ordinary Differential Equations

L esson 32

Linear Differential Equation of Higher Order (Cont.)

Here we continue discussion for solving linear equatiornefformf(D)y = F(x). In the
last lesson, we have found particular integral for two défe types of functiong’(z).
In this lesson we shall continue discussing various othitaasons for finding particular
integral.

32.1 Rulelll: F(x)isapolynomial of degree!

Take out the lowest degree term frgiiD), so as to reduce it in the forfn+ f(D)]". Take
it to numerator, i.e.[1 + f(D)]~™ and expand it in ascending powers@fvith the help of
Binomial series:

(a—1) 5

a
a _
l+z)*=1+az+ T + i

Note that in the expansion we do not need to consider ternmspaitver more thah since
[ + 1th and higher order derivatives of the polynomial of degredl be zero.

ala—1)(a— 2)x3 ey

32.1.1 Example

Solve the differential equation (D? + D)y = 2% + 22 4 4

Solution: The characteristic equation of the corresponding homagenequation is
(m*+m)=0 = m=0,-1.
The complementary function is + coe=*. The particular integral is

1 1
P.I.:7x2+2x+4:— x2+2x+4

D2+ D D(1+ D)

Taking1 + D into numerator and expending this into an infinite series ate g

1 1
P.I.:5(1—D+D2—D3—|—...)(x2+2x+4):5(x2+2x+4—2x—2+2)
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: . 1 :
Operatingl /D on each term, we obtainl. = E(ﬁ +4) = (z3/3 + 4z). The desired gen-
eral solution is

3
y=c1+coe ¥+ (%+4x).

32.2 RulelV: F(x) isof theform ¢**V, where V isany function of =

Using shift property of the operator discussed in the |astda we can easily prove that

1 eOéIV — eOéI 1

(D) D+

32.2.1 Example

Solve (D? — 2D + 1)y = x2e*.

Solution: The characteristic equation and its roots are
m?>—2m+1=0, and m =1, 1.
Thus, the complimentary function is
o gl e ol 6 [

The patrticular integral is

1 2 x 1 2

PlL=— 2=~
DZ_2D+1 ¢ T (D-17

Using shift property we get

PL=¢"— 4%

I

D

R
S|~
A~
w| 8,
~__

I

o

8
gk
o] T

The required solution ig = (¢; + cox)e” + ex%.
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32.3 RuleV: F(z) isof theform 2V, where V isany function of =

Here, we prove the following result

1 1 d 1
V) = Vb= |V
0@ == 75" * a5 (77)
whereV is a function ofr. We start with the fact that for a given functigfx) we have
D (xg(x)) = xD (9(x)) + g(x)

Which can be rewritten as

D (eg() =D (o(a)) + (5 ) (412

OperatingD once more and after simplifications we obtain

D (ag(o)) = 2D {afa) + ( 50 ) (910

In general, by the method of induction for any natural numbee can show that

D" (agle)) = 2D" g(a) + (750" ) (o)

Direct implication of the above result leads

D) (ag(e) = a1 (D) alo)) + (35D) ) ate) (32.1)

Let us assume that(D)g(z) = V(z) so that we have

10) (25057 @) = 2£0) (575V0) + (5500) (757 (@))

or
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This implies

V(@)= D) (+5V ) = (4500) (5157 @))

Operating the above equation byf (D) we get

ﬁ (@ () = a5 (1D>V(x) - (%f(D)) (ﬁ‘/(w))

Equivalently, we have the final result

1 1 d 1

32.3.1 Example

Solve (D? +9)y = xsinx

Solution: The roots of the characteristic equations @&p2. Hence, the complimentary
function is given by
C.F. = (¢1 cos 3z + ca sin 3x)

The patrticular integral is

P T Sin x

Using Rule V, we get

P.I —x;sinx%—i L sin
D249 dD \ D2 +9
This can be now evaluated as

1 . 2D i 1 . 2D . 1 . 1
Pl.=x—sint — ————=sinz = —zsinx — —sinx = —zsinx — — cos &

8 (D? +9)? 8 64 8 32

The required general solution is

1
y = (c1 cos 3z + cosin 3z) + gxsinx— 35 08T
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32.4 RuleVI: F(z)isof theform z" sin az Or 2™ cos ax

In this case Rule IV or Rule V can be applied. For the applicaof rule IV we should

note that
1. Lxm sinaz = Im < L xmeiax)
f(D) f(D)
2. L 2™ cosaxr = Re ( L xmemx).
f(D) f(D)

32.4.1 Example

Find a particular integral of (D? 4 1)y = 2?sin 2z
Solution The particular integral is

1 .
= DT_H.TQ sin 2z = Im .1}'262uc

P.I
D2 +1

Applying Rule IV, we get the particular integral as
PI =Im ezm;xz = Im ezm;ﬁ
T (D +2i)2+1 D2 +4Di—3

£2i% LA BDUNE
PL=I [ 5y e L e :
oS- (75
Using the Binomial expansion, we get

e (€T, (4D, DR, (4D, D? 1,

=Im e 1+@+D—2—16D2+ z?
N —3 3 3 9

1 ' 2
=Im (—g(cos2x+isin2x) {xz - &Tx - 56})

Collecting the imaginary part we have

1 26 8
Pl =-— 3 {(xz — 5) sin 2z + ngOSQx] .
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Suggested Readings

Boyce, W.E. and DiPrima, R.C. (2001). Elementary Differ@rfEquations and Boundary
Value Problems. Seventh Edition, John Willey & Sons, In@wNrork.

Dubey, R. (2010). Mathematics for Engineers (Volume Il)rdéa Publishing House.
New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scietrdiisd Engineers. First Indian
Edition. Viva Books Pvt. Ltd. New Delhi.

Raisinghania, M.D. (2005). Ordinary & Partial Differentiaquation. Eighth Edition. S.
Chand & Company Ltd., New Delhi.

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.

Arfken, G.B. (2001). Mathematical Methods for Physicitgth Edition, Harcourt Aca-
demic Press, San Diego.

Grewal, B.S. (2007). Higher Engineering Mathematics. Emmth Edition. Khanna
Publishilers, New Delhi.

Edwards, C.H., Penney, D.E. (2007). Elementary Diffesdriiquations with Boundary
Value Problems. Sixth Edition. Pearson Higher Ed, USA.

Piskunov, N. (1996). Differential and Integral Calculusiiyme - 2). First Edition. CBS
Publisher, Moscow.

6 www.AgriMoon.Com



277

Module 3: Ordinary Differential Equations

Lesson 33

Method of Undetermined Coefficients

In the last lesson we have discussed operator method of grghrticular integral. In
this lesson we lean method of undetermined coefficientsridirfg particular integral of
non-homogeneous differential equations. This methodadively easier to apply once a
possible form of a particular integral is known. This metlsohainly applicable to linear
differential equations with constant coefficients.

33.1 Method of Undetermined Coefficients

The method of undetermined coefficients requires that weenaakinitial assumption
about the form of a particular solution of the differentigjuation, but with the coeffi-
cients left unspecified. We then substitute the assumedssion into the given differ-
ential equation and attempt to determine the coefficientsssin satisfy that differential
equation. If we are successful, then we have found a paatisolution of the differential
equation. If we cannot determine the coefficients, thenrtigans that there is no solution
of the form that we assumed. In this case we may modify th@irmssumption and try
again.

The main advantage of the method of undetermined coeffgisrthat it is straightfor-
ward to execute once the assumption is made as to the forne pfittiicular solution. Its
major limitation is that it is useful primarily for equatisrior which we can easily write
down the correct form of the particular solution in advaritlis method is usually used
only for problems in which the homogeneous equation hastanhsoefficients and the
nonhomogeneous term is restricted to a relatively smadisatd functions. In particular,
we consider only nonhomogeneous terms that consist of polials, exponential func-
tions, sines, and cosines. Despite this limitation, thehwebf undetermined coefficients
is useful for solving many problems that have important impgibns.

We shall demonstrate the method by taking a couple of diitezgamples.
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33.2 Example Problems

33.2.1 Problem 1

Solve the following initial value problem
y' + 5y +6y=22+1 (33.1)

with the initial conditionsy(0) = 0 andy/(0) = 3.

Solution: First we solve the corresponding homogeneous equation.ch@eacteristic
equation is
m24+5m+6 = m=-2,-3.

Hence the complementary function is
C.F. = 016—2:1: + 026—336.

To find particular integral, the trick Is to somehow to guesg @articular solution to
Equation (33.1). Note that: + 1 is a polynomial, and the left hand side of the equation
will be a polynomial if we lety be a polynomial of the same degree. Let us try

wf =l B
We plug in to the differential equation to obtain

Y, + 5y, + 6y, =(Azx + B)" 4+ 5(Azx + B)' + 6(Ax + B)
=0+ 5A+6Ax + 6B = 6Ax + (5A+ 6B).

So06Ax + (5A + 6B) = 2z + 1. Therefore,

That means

Hence the general solution to (33.1) is

3r—1

y = Cre 2 + Che " + 5
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The general solution must satisfy the given initial cormatis. First find
1
y’ = —2016_2m — 3026_3m + 3

Then

1 1 1
O:y(O):C'1+C'2—§, gzy/(0)2—201—302+§.

We solve to get’; = 1/3 andC; = —2/9. The particular solution we want is

I 5, 2 40 3v—1 32273 43r-1
— —e _|_ = .
3 9 9 9

33.2.2 Problem 2

Find a particular solution of the differential equation

y" + 2y + 2y = cos(2x).

Solution: We start by guessing the solution that includes some meltptos(2x). We
may have to also add a multiple aifi(2x) to our guess since derivatives of cosine are
sines. We try

yp = Acos(2z) + Bsin(2x).

We plugy, into the equation and we get
—4A cos(2x) — 4Bsin(2x) — 4Asin(2z) + 4B cos(2x) 4+ 2A cos(2x) 4 2B sin(2z) = cos(2x).

The left hand side must equal to right hand side. We groupsemd get-4A+4B+2A =
land—4B —4A+2B = 0. S0-24 + 4B = 1 and2A4 + B = 0 and henced = 77 and
B = 1. Hence a particular solution is

— cos(2z) + 25sin(2x)

yp = Acos(2z) + Bsin(2z) = 10

Remark 1: If the right hand side contains exponentials we try expdaént For
example, for
Ly — 63937

we will try y = Ae3* as our guess and try to solve fdr
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Remark 2: If the right hand side is a multiple of sines, cosines, exptaks, and
polynomials, we can use the product rule for differentiatio come up with a guess. We
need to guess a form fgy such thatLy, is of the same form, and has all the terms needed
to for the right hand side. For example,

Ly = (1 + 32%) e % cos(mz).
For this equation, we will guess
yp = (A + Bx + Ca?) e ¥ cos(nx) + (D + Ex + Fa?) e " sin(rx).

We will plug in and then hopefully get equations that we cdwestor A, B, C, D, E, and
F.

Remark 3: If the right hand side has several terms, such as
Ly = €*® + cos z.

In this case we find that solvesiu = e?* andv that solves.v = cosz (that is, do each
term separately). Then note thatjif= v + v, thenLy = €2* + cosz. This is because is
linear; we haveLy = L(u +v) = Lu + Lv = ¢** 4 cos .

33.2.3 Problem 3

Find a particular solution of

y" — 3y — 4y = 3e* + 2sint — 8¢ cos 2t.

Solution: By splitting up the right side of the given differential eqgoa, we obtain the
three differential equations

y" — 3y — 4y = 3e%, y" — 3y’ — 4y = 2sint, y" — 3y’ — 4y = 8e' cos 2t

Solutions of these three equations can be found with aptepguess of the particular
integral discussed above. Finally, a particular solutgtheir sum, namely,

1 3 5 10 2
Y(t)= 56% + 7 costﬁ sint + 1—36%0321& + 1—36t sin 2t.
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The procedure illustrated in these examples enables usvie atarge class of problems

in a reasonably efficient manner. However, there is one diffichat sometimes occurs.

It could be that our guess actually solves the associate@geneous equation. The next
example illustrates how it arises.

33.2.4 Problem 4

Solve the following differential equation

y// o 9y — e?)x

Solution: In order to find a particular integral an intelligent guessilddoey = Ae3*, but
if we plug this into the left hand side of the equation we get

Y — 9y = 9463 — 943 = (0 £ 3.

There is no way we can choodeo make the left hand side ké® because our guess sat-
isfies homogeneous equation. Note that the general sohitible homogeneous equation
IS

C.Br= C1emZ - Coe’?

Thus our assumed particular solution is actually a solutibthe corresponding homo-
geneous equation; consequently, it cannot possibly beuigolof the nonhomogeneous
equation. To find a particular solution we must thereforesader functions of a some-
what different form. We modify our guess o= Aze3* and notice there is no difficulty
anymore. Note thaf’ = 4e3* + 3Aze3” andy” = 6A4e3* + 9Aze3*. So

y" — 9y = 6Ae3” + 9Axe3” — 9Axe’” = 6Ae3”.

Thus6Ae® is supposed to equal®. HenceA = 1 and so4 = . We can now write the

general solution as

1
Y=Y+ Yp= Che 3% + Ched® + 6 ze?.

33.2.5 Problem 5

Find a particular solution of
y" + 4y = 3cos 2t
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Solution: First we write its complimentary function
C.F. =c¢1cos2t + cosin 2t
As in earlier example, we guess
yp = At cos2t + Btsin 2t

Then, upon calculating, andY,’, substituting them into the given differential equation,
we find that
4Asin 2t + 4B cos 2t = 3cos2t

ThereforeAd = 0 andB = 3/4, so a particular solution of the given differential equati®

3
yp(t) = Zt sin 2t

Remark 4: Itis also possible that multiplying bydoes not get rid of the problem we
had faced in last two examples. For example,

y// _ 6y’ + 9y = €3I.

The complementary solution is = C1e3* + Coze3®. Guessing, = Ae3® or y = Axe3®
would not get us anywhere. In this case we will gugss Az2e3?.
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Module 3: Ordinary Differential Equations

Lesson 34

Method of Variation of Parameters

In the last lesson we have discussed method of undetermaedfilcrents for finding par-
ticular integral. In this lesson we lean another rather ggnmaethod, called method of
variation of parameters, of finding particular integral @nrhomogeneous differential
equation. In contrast to the method of undetermined coefftsi this method is also ap-
plicable for solving linear equations with variable coa#fitts. For the sake of simplicity
we restrict ourselves for second order linear differerg@hations. However the method
is also applicable for higher order linear differential atjons.

34.1 Method of Variation of Parameters

Consider a second order differential equation of the form
v+ Py +Qy=R (34.1)

where P, Q, R are functions ofr or constants. Ifz andv are two linearly independent
solutions of the corresponding homogeneous differengjaa&on

y' + Py +Qy=0 (34.2)
Then, the complimentary function is
y = au + bv (34.3)

wherea, b are two arbitrary constants andv are functions of:. Sinceu andv are solu-
tions of (34.2), we have

W4+ Py +Qu=0, v +Pv+Qu=0. (34.4)

The method of variation of parameters relies on finding aqadr integral of nonhomo-
geneous equation by replacing constangds with functions ofz. The aim is to find
functionsA(z) and B(x) such that

yp = Au + Bu (34.5)

www.AgriMoon.Com



284

Method of Variation of Parameters

is a particular integral of (34.1). To determidéz) and B(x) we need to have two equa-
tions. These are obtained as follows. First we compute

y, = Au' + Bv' + A'u + B'v (34.6)

In order to avoid second order derivativesdodnd B and to simplify the above expression
we take

Alu+ Blv =0, (34.7)
Now, the Equation (34.6) reduces to
y, = Au' + Bv' (34.8)
Differentiating (34.8), we obtain
y, = A'v' + Au" + B'v' + BY” (34.9)

Using the values af, 4’ andy” given by (34.5), (34.8) and (34.9) into the Equation (34.1),
we get

A + Au" + B + BY" + P(AY + Bv') + Q(Au+ Bv) = R
Further simplifications lead to
AW + Pu' +Qu) + B + Pv' + Qu)+ Av' + Bv" =R
Using Equation (34.4) we get
AW+ BY =R (34.10)

Solving (34.7) and (34.10) fat’ andB’, we get

—vR ) ul?
R and B' = 7 (34.11)

whereW is Wronskian ofu andv, and given bylv = wv’' — v'v # 0. Note that the

Wronskian is nonzero becausandwv are two linearly independent solutions. Integrating
(34.11), we get

A= f(z), B=g(x), (34.12)
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where

f@) =~ [ ar, o) = [ Bl

Using (34.12) into (34.5), we have
yp = uf(x) +vg(x).
Hence, the general solution of the given differential epunait

yp = au~+bv +uf(x) +vg(z).

34.2 Example Problems

34.2.1 Problem 1

Solve the differential equatiaff + n?y = secnz.

Solution: Comparing the given equation with the standard equation Py’ + Qy = R,
we getP = 0, Q@ = n? andR = secnx. The characteristic equation of the corresponding
homogeneous equation is

(m? 4+ n?)y =0, so that m = +in

The complimentary function is
C.F. = (c1 cosnz + co sinnx)

In order to find a particular integral, we have= cosnz andv = sinnz and R = sec na.
The Wronskian is given as

CcOS Nx sin nx

—nSINNT 7N COSNT

Then, the particular integral of the given equation is
Pl =uf(x) 4+ vg(zx)

where
sin nx sec nx

flz) == [ —=dz=— / — i — 1 In(cos nx)

n n?
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and
COS Nx sec nx

Xz
Y s P ity P
ola) = [ o= [y

Hence, the required solution is

. x .
y = (c1cosnx + casinnz) + cosnz — In(cos nz) + — sinnx
n n

34.2.2 Problem 2

Find the general solution of the differential equatigh+ n?y = tannz.

Solution: We compare the given equation wigh+ Py’ + Qy = R to haveP = 0, Q = n?
andR = tannz. Similar to the previous example, we have the complimeritangtion as

C.F. = (¢1 cosnx + casinnx)

To find particular integral we have = cosnz, v = sinnz, R = secnz. The Wronskian is

given by
COSNT sin nx
W = ‘ =n # 0.
—nsinnx ncosnz
The patrticular integral is
P.I = uf(z)+ vg(zx)
where
R i t 1
flz)=— Ude =— / de = ﬁ[sin nx — In(sec nx + tan nx)]
and P
t 1
g(x) = qux:_/cosnxnannxdx:_ﬁcosmj
The desired general solution is
, CoSNT | .
y = (c1 cosnz + cosinnx) + [sin nz — In(sec nx + tannz)|] — — sin nx cos nx

n2 n?

34.2.3 Problem 3

. : . (2
Solve the differential equatloc?—z + n%y = cot nz.
a
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Solution: Similar to the previous example, the complimentary funciogiven by
C.F. = (¢1 cosnx + casinnx)

In this case, we have = cosnz, v = sinnz and R = cot nz. The Wronskian is given by

COS NI sin nx
W = =n#0
—nsinnr ncosn
Then, the particular integral is
Pl =uf(x) 4+ vg(zx)
where
R 1 t 1
flz)=— del’ = —/de == sin nx
and
(z) uRd /cosn:ccotnxd 1 [ 1 <t nx)}
)= | —dv=— | ————dxr = — |cosnx + In ( tan —
J w n n? 2
The required solution is
. 1 . 1 nr\j .
y = (¢ cosnz + cpsinnw) — 2 COS NI SIn NIT + = [cos NI (tan 7)] Sin nx

34.2.4 Problem 4

Using the method of variation of parameters, find the gensséltion of the differential

equation
d2
d—{Lz + Yy = SeC2 x

Solution: The complimentary function is given by
C.F. = (c1cosx + casinx)

Also we have, = cosz andv = sinz andR = sec? z and

cosx sinzx

—sinx cosx
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Then, the particular integral is
PI =uf(x) 4+ vg(x)

where

flz) =— %dx:—/sinxsec2xdx:—/secxtanxdx:—sec:z:

and
u

g(x) = /WRdx = /Cosxsec2 xdxr = /secxdx = In[sec x + tan z]

The required solution is

y = (c1 cosz + cgsinx) — cosx sec z + sin x In[sec x + tan z.
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Module 3: Ordinary Differential Equations

Lesson 35

Equations Reducible to Linear Differential Equations with Constant
Coefficients

In this lesson we shall study two special forms of linear ¢igna with variable coeffi-
cients which can be reduced to linear differential equatiith constant coefficients by
a suitable substitution. Those special forms which we shetg are called Cauchy-Euler
homogeneous linear differential equations and Legentia@isogeneous linear differen-
tial equations.

35.1 Cauchy-Euler Homogeneous Linear Differential Equathn

A linear differential equation of the form

A" n—1 dn—2

_qd _
aoxnﬁ + az” 1d:):”—?{ + agz” 2dx"—g + ... +apy = F(x), (35.1)

whereay, as, . .., a, are constants and is either a constant or a function ofonly, is
called Cauchy-Euler homogeneous linear differential @&qna Note that the index of
and order of derivative is same in each term of such equations

Using the symbol®D (= d/dx), D*(= d?/dx?),..., D"(= d"/dz"), the Equation (35.1) be-
comes

(apx" D™ + ayz" I D" 4 aga™ 2D 4 4 ay)y = F(x) (35.2)
The above equation can be reduced to linear differentiaatmu with constant coeffi-

cients by substituting

d 1
x=¢€% or Inx=z2 sothat d—zz— (35.3)
T x

Using chain rule for differentiation we obtain

dy _dydz_ 1dy
dr  dz dx xdz
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Equations Reducible to Linear Differential Equations with Constant Coefficients

.. d
Deflnlngd— =: D1, we have
z

dy dy
—=— & axDy=D
xdx dz Ty 1y

Similarly, for the second order derivative
dy _d (dy\ _d (ldy\ _ldy 14 (dy
de?  dx \de) dxr\zdz)  22dz axdx \dz

g L () Ldy 1y
2dz  xdz \ dz

N dv ~ 22dz ' x2d2?
Thus, we have
2

-2 =—2 -2 = D% =Di(D;—1)y.

Similarly, 23 D3y = D1(Dy — 1)(D; — 2)y and so on. In general, we have the relationship
2"D" = Dl(Dl = 1)(D1 = 2) . . (Dl —n -+ 1)y
Substituting the above valuesafrD, 22D?, ..., 2" D" in the Equation (35.1), we get
[aoDl(Dl = 1) r (Dl E— - 1) §- o an_ng(Dl = 1) + ap_1D1 + an] L — (ez) (354)

The Equation (35.4) is a linear differential equation witdmstant coefficients which can
solved with the methods discussed in previous lessonsllyibg replacingz by In z we
obtain the desired solution of the given differential egurat

35.2 Example Problems

35.2.1 Problem 1

Solve the differential equatian?D? + D — 4)y = 0.

Solution: Substitutingr = ¢* = Inx =z = 2D = Dy, 22D? = D1(D; — 1), the given
equation reduces to

[Di(Dy —1)+ Dy —4y=0 = (DI-4)y=0
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Equations Reducible to Linear Differential Equations with Constant Coefficients

The roots of the corresponding characteristic equatiomare2, —2. The required solu-
tion of the transformed equation is

Y= c16%% + coe %

Puttinglog » = 2, we have the desired solution as
2

Y= cle + cox” “.

Herec; andc, are arbitrary constants.

35.2.2 Problem 2

Find the general solution of the differential equatiariD? + y)y = 322.

Solution: Substitutingr = ¢, the given equation reduces to

(D1(D1 = 1)+ 1)y =3e* = (D} —D;+1)y=3e"
The characteristic equation of this differential equatsn

(mM*—m+1)=0 = m=(1%+iv3)/2
The complimentary function is
C.F.=¢*/? [01 cos <2\/§/2> + (cl sin Z\/§/2>}
Substitutingz = In z, we get
CF. =z [q cos (m x\/§/2) + cpsin <ln x\/ﬁ/z)}
The particular integral of the transformed equation is
1

PlL=—— 3% = 1

32z: 2z
DZ—Dj+1 22_9+1°° ~°

Hence, the desired solution of the given differential eiguneis

Y=+ [01 coS (1n9:\/§/2) + ¢ sin (lnx\/g/gﬂ 12
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Equations Reducible to Linear Differential Equations with Constant Coefficients

35.3 Legendre’s Homogeneous Linear Differential Equatios

A linear differential equation of the form is
[(a+ bx)"agD™ + ay(a+ bx)" 1D ! +ag(a + bx)" 2D" 2 + . +anly = F(z), (35.5)

wherea, b, a1, as, ..., a, are constants, and is either a constant or a function ofonly,
is called a Legendre’s homogeneous linear differentiabiqn. Note that the index of
(a + bz) and the order of derivative is same in each term of such emuaiio solve the
Equation (35.5), we introduce a new independent variaklech that

a+br=e® or In(a+bx)==z2 sothat b/(a+bx)=dz/dx. (35.6)

Now, for the first order derivative we have

dy oy b 4
dr  dzdx  (a+bx)dz
This implies
dy ., dy
= S Dy = bD
(a+bx)dx bdz < (a+bz)Dy =bDyy

Similarly for the second order derivative we get

dy (Y _d (b dy
de?  dx \dr) dx \(a+br)dz

This can be further simplified to get

d%y b? dy b i dy
dx

de?2 ~ (a+bx)?dz * (a+ bx)
b? dy n b d (dy\ dz
(a+bx)?2dz  (a+bx)dz

Substitutingdz/dx from Equation (35.6), we obtain

d%y b? dy b? d%y

daz? _(oH—bx)2@+ (a + bx)2 d=?
This gives us

d2
(a+ bx)2 s = p? (— - —) & (a+bx)?D%y =b*Dy(D; — 1)y
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Equations Reducible to Linear Differential Equations with Constant Coefficients

In general, we have
(CL + bl‘)nDn = anl(Dl — 1)(D1 — 2) . (Dl —-—n+ 1)y

Substituting the above values @f + bx), (a + bz)D, (a + bx)2D?, ..., (a + bx)"D™ in the
Equation (35.5), we get the following linear differentiajuation with constant coeffi-
cients

z —
[aoanl(Dl — 1)...(D1 —n + 1) + ...+ an_Qb2D1(D1 — 1) + an,—1bD1 + an} y==F (6 b a)

The methods of solving this transformed equation are samdesagssed in previous sec-
tion.

35.3.1 Example

Solve the differential equation

3y d*y dy 1
l+2) 22 42142 —= — (1+2)* -2 +(1 =
(1+2) i " (1+2) dr? (1) d:z:+( o)y (1+ )

Solution: UsingD = % and dividing both sides bf# + 1), the given differential equation

can be rewritten as
[(1+2)°D3 +2(1 +2)?D* = (1 +2)D 4+ 1]y = 1+ z) ™%
This is the Legendre’s homogeneous linear equation whintbeasolved by substituting
(14+z)=e¢"<h(l+z)==2
This substitution readily implies
(1+2)D =D, (1+x)?D*=Dy(D;—-1), (1+2)>D*=Dy(D;—1)(D;—2)
The given differential equation reduces to
[D1(D1 —1)(Dy —2) +2D1(D; — 1) = Dy + 1]y = e %

or
(D} —Di — Dy +1)y=e*
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Equations Reducible to Linear Differential Equations with Constant Coefficients

The characteristic equation of the corresponding homagehequation is

3

(m —m2—m+1)y:0

The roots of the characteristics equationsare- 1,1,—1. Hence the complimentary
function of the transformed differential equation is

CF.=(c1 + c2)e” +c3e™”
The particular integral of the transformed differentialiation can be found as
PIL = ! %

Dy -D7-Di+ 1)

— 1 6—22
23221241
= 16—22

9
Hence the general solution of the transformed differeiplation is

I _
2 _ e 2z

9
Replacing: by In(1 + z) we obtain the desired solution of the given differential &tpn

c Lol
y:[01+021n(1+x)](1+x)+(1—337) C9(1+a)

y = (c1 + cp2)e” + cze™

Suggested Readings

Boyce, W.E. and DiPrima, R.C. (2001). Elementary Differ@riEquations and Boundary
Value Problems. Seventh Edition, John Willey & Sons, In@wNork.

Dubey, R. (2010). Mathematics for Engineers (Volume Il)rdéa Publishing House.
New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scieirdiisd Engineers. First Indian
Edition. Viva Books Pvt. Ltd. New Delhi.

Raisinghania, M.D. (2005). Ordinary & Partial Differentiaquation. Eighth Edition. S.
Chand & Company Ltd., New Delhi.

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.
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Module 3: Ordinary Differential Equations

L esson 36

Methods for Solving Simultaneous Ordinary Differential Equations

In this lesson we shall consider systems of simultaneowsatimifferential equations
which contain a single independent variable and two or mepeddent variables. We
will consider two different techniques, mainly the methde@kmination and the method
of differentiation, for solving system of differential eafions.

36.1 Simultaneous Ordinary Linear Differential Equations

Let 2 andy be the dependent ande the independent variable. Thus, in such equations
there occur differential coefficients af y with respect tat. Let D = d/dt, then such
equations can be put into the form

fi(D)r + f2(D)y = Th (36.1)
91(D)z + g2(D)y = T (36.2)

whereT; andT; are functions of the independent variablend f,(D), f2(D), g1(D), and
g2(D) are all rational integral functions @b with constant coefficients. In general, the
number of equations will be equal to the number of dependandbies, i.e., if there are
n dependent variables there will beequations.

36.2 Method of Elimination

In order to eliminate, between equations (36.1) and (36.2), operating on botls sitle
(36.1) byg,(D) and on both sides of (36.2) by(D) and subtracting, we get

(f1(D)g2(D) — g1(D) f2(D)) x = go(D)T1 — f2(D)T% (36.3)

This is a linear differential equation with constant coédiits inx andt and can be solved
to give the value of in terms oft. Substituting this value of in either (36.1) or (36.2),
we get the value of in terms oft.
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Methods for Solving Simultaneous Ordinary Differential Equations

Remark 1: The above Equation®6.1)and (36.2)can be also solved by first elimi-
natingx between them and solving the resulting equation to,geterms oft. Substitut-
ing this value of; in either(36.1)or (36.2) we get the value af in terms oft.

Remark 2: In the general solutions 0{36.1) and (36.2) the number of arbitrary
constants will be equal to the sum of the orders of the equns{6.1)and (36.2)

36.3 Example Problems

36.3.1 Problem 1

Solve the simultaneous equations

dx

E—?x%—yz@ (36.4)
dy r
i —2x -5y =0 (36.5)

Solution:  Writing D for d/dt, the given equations can be rewritten in the following
symbolic form as

(D—Tr+y=0 (36.6)
—2zx+(D-5)y=0 (36.7)

Now, we eliminater by multiplying Equation (36.6) by and operating (36.7) byD — 7)
as follows

2(D—-T)x+2y=0 (36.8)
—2(D—-Txz+(D—-7)(D—-5y=0 (36.9)

Adding (36.8) and (36.9), we get
[(D=7)(D—=5)+2ly=0

or
(D* = 12D +37)y = 0
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Methods for Solving Simultaneous Ordinary Differential Equations

This is a linear equation with constants coefficients. Italaury equation is
(m* —12m +37) =0

The roots of the auxiliary equation are= 6 + i. Therefore, we get the general solution
for the variabley as

y = e%(cy cost + cosint), (36.10)

wherec; andc, being arbitrary constants. We now firdy using Equation (36.7). Now
from (36.10), differentiating w.r.t;, we get

Dy = 6e%[(c1 cost + casint) + €% (—cy sint + co cost)]
or on simplifications we obtain
Dy = 6e%[(6¢1 + ca) cost + (—c1 + 6c2) sin ] (36.11)
Now, substituting; and Dy in the Equation (36.7), we get
z = (1/2) x %[(cy + c2) cost + (—c1 + ¢3) sint] (36.12)

Thus, equations (36.10) and (36.12) give the desired ges@tdion.

36.3.2 Problem 2

Solve the linear system of differential equations

D* —y+5Dv=x (36.13)
2Dy — D?v +4v = 2 (36.14)

Solution: Multiplying (36.13) by2D and (36.14) by D? —1) and then subtracting (36.14)
from the Equation (36.13) we obtain

[10D? + (D* — 1)(D? — 4)Jv = 2Dz — (D?* — 1)2
or

(D* +5D% +4)v = 4 (36.15)
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Methods for Solving Simultaneous Ordinary Differential Equations

This is a linear differential equations with constant ca#fints whose solution can easily
be found. The characteristic equation of the corresponimgogeneous equation is

mt4omiP44=0 = M*H+1D)M*+4) =0 => m=4i,+2
The complimentary function is
C.F.=cicosx + +cosinx + c3cos2x + ¢4 8in 2

The particular integral is
1

T Diy5D2+4
We write the general solution faras

P.I 0z —q
v=1+cjcosT + cysinx + c3 cos 2x + ¢4 sin 2z (36.16)

Now we find an equation givingin terms ofv. This can be done by eliminating from the
equations (36.13) and (36.14) those terms which involvivalires of y. So multiplying
Equation (36.13) by 2 and Equation (36.14) byve get

(2D? — 2)y 4+ 10Dv = 2z (36.17)
2D% — (D3 —4D)v =0 (36.18)

Subtracting (36.17) from (36.18) we get
2y — D30 — 6Dv = —2z (36.19)
or
Y= —z+ %D% + 3Dy (36.20)
Substituter from (36.16) into the Equation (36.21) to obtain the expesfor y as
Y= —1— ey cosz + gcz €08 T + 264 co8 A — 203 8in 22, (36.21)

2

wherecy, ¢, c3 andey are arbitrary constants.
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36.4 Method of Differentiation

Sometimesy andy can be eliminated if we differentiate (36.1) or (36.2). Feample,
assume that the given equations (36.1) and (36.2) relateyteantitiess, y, dz/dt and
dy/dt. Differentiating (36.1) and (36.2) with respect#owe obtain four equations con-
taining z, dz/dt, d*x/dt?, y, dy/dt and d?y/dt*>. Eliminating three quantitieg, dy/dt and
d?y/dt* from these four equations,is eliminated and we get an equation of the second
order withz as the dependent an@s the independent variable. Solving this equation we
get value ofr in terms oft. Substituting this value of in either (36.1) or (36.2), we get
value ofy in terms oft. The technique will be illustrated by the following example

36.4.1 Example

Determine the general solutions ferandy for

¥ _ _,
y: Y™
dy

-7 — ]
dt+9:

Solution: Writing D for d/dt, the given equations become

D'~ y='¢ (36.22)
r+Dy=1 (36.23)

Differentiating the equation Equation (36.22) w.t.tve get

D%z —Dy=1 (36.24)
Now we can eliminatg by adding equations (36.24) and (36.23) to get

(D* + 1)z =2 (36.25)

The auxiliary equation of the above differential equatiem? + 1 = 0 and therefore the
general solution of the homogeneous equation is

C.F.=cjcost+ cosint
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wherec; andc; are arbitrary constants. The particular integral is

1
Pl=—92=(1+D¥12=(1-D%*+.)2=2
Pl (1+ D7) ( +..)

Hence, the general solution of (36.25) is

x = cpcost + cysint + 2 (36.26)
From Equation (36.22), we get

y = cacost —cysint — ¢ (36.27)

Thus, the required solution is given by (36.26) and (36.27).

Suggested Readings

Waltman, P. (2004). A Second Course in Elementary Diffea¢ Biquations. Dover Pub-
lications, Inc. New York.

Boyce, W.E. and DiPrima, R.C. (2001). Elementary Differ@&riEquations and Boundary
Value Problems. Seventh Edition, John Willey & Sons, In@ywNork.

Dubey, R. (2010). Mathematics for Engineers (Volume Il)rdéa Publishing House.
New Delhi.

McQuarrie, D.A. (2009). Mathematical Methods for Scietrdiisd Engineers. First Indian
Edition. Viva Books Pvt. Ltd. New Delhi.

Raisinghania, M.D. (2005). Ordinary & Partial Differentiequation. Eighth Edition. S.
Chand & Company Ltd., New Delhi.

Kreyszig, E. (1993). Advanced Engineering Mathematicsve8th Edition, John Willey
& Sons, Inc., New York.

Grewal, B.S. (2007). Higher Engineering Mathematics. Emmth Edition. Khanna
Publishilers, New Delhi.

Piskunov, N. (1996). Differential and Integral Calculusiiyme - 2). First Edition. CBS
Publisher, Moscow.
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Module 3: Ordinary Differential Equations

Lesson 37

Series Solutions about an Ordinary Point

37.1 Introduction

If we can’t find a solution to a differential equations in arfoof nice functions, we can
still look for a series representation of the solution. &esolutions are very useful be-
cause if we know that the series converges, we can approxitmasolution as closely as
we want. In this lesson we describe series solutions ofisglsecond order linear homo-
geneous differential equations with variables coeffideieries solution can be used in
conjunction with variation of parameters to solve lineanim@mogeneous equations. For
simplicity, we shall be dealing mainly with polynomial cGefents. Here we consider the
second order homogeneous equation of the form

P(x)y” +Q(z)y' + R(z)y =0 (37.1)

where P,Q and R are polynomials or analytic functions in general. Many peats in
mathematical physics leads to equations of the form (37a¥)nly polynomial coeffi-
cients; for example, the Bessel equation

ny// + xy/ + (x2a2)y — 0,
whereq is a constant, and the Legendre equation

(1 —2)%y" =22y +c(c+ 1)y =0

where c is a constant.

37.2 Useful Definitions

Here we provide some definitions which will be very usefulfiading series solution of
the differential equations.
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37.2.1 Analytic Function

A function f(x) defined on an interval containing the point x is called analytic at
if its Taylor series,

0 £(n)(p
S L)y (37.2)

n!
n=0

exists and converges §gx) for all z in the interval of convergence of (37.2).

37.2.2 Ordinary Points

A point z = =z is called an ordinary point of the Equation (37.1)Af @, and R are
polynomials that do not have any common factors, then a pgirg called an ordinary
point if P(x) # 0. A pointx; whereP(x;) = 0 is called a singular point. If any a?, Q,
or R is not a polynomial, then we cally an ordinary point ifQ(z)/P(x) and R(x)/P(z)
are analytic about.

It is often useful to rewrite Equation (37.1) as
y" +pla)y +q(@)y =0 (37.3)

wherep(z) = Q(x)/P(x) andq(x) = R(z)/P(x). The Equation (37.3) is called equivalent
normalized form of the Equation (37.1).

37.2.3 Singular Points

If the pointz = z is not an ordinary point of the differential Equation (37at)(37.3),
then it is called a singular point of the differential eqoatof (37.3). There are two types
of singular points{i) regular singular points, ang) irregular singular points. A singular
point x = z( of the differential Equation (37.3) is called a regular silag point of the
differential Equation (37.3) if both

(z — z0)p(z) and(z — z0)3q(z)

are analytic at = z. A singular point, which is not regular is called an irregudargular
point.
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Series Solutions about an Ordinary Point

37.3 Example Problems

37.3.1 Problem 1

Show that z = 0 isan ordinary point of (z> — 1)y” +ay' —y = 0, but » = 1 isa regular
singular point.

Solution: Writing the given equation in normalized form

d%y x dy 1

G-Da+ld @D’ (37.4)

Comparing (37.4) with the standard equatidn+ p(z)y’ + ¢(z)y = 0, we have
px) =z/(z —1)(x+1)andq(z) = -1/(z — 1)(z + 1).

Since bothp(x) andq(z) are analytic at: = 0, the pointz = 0 is an ordinary point of the
given Equation (37.4). Further note that bpth) andq(z) are not analytic at = 1, thus
x = 1is not an ordinary point and so= 1 is a singular point. Also

(x—1)P(x) =z/(z+1)and(z — 1)2Q(z) = —(z — 1)/(z + 1)
show that bothz — 1)P(z) and(z — 1)?Q(x) are analytic at- = 1. Thereforex = 1 is a

regular singular point.

37.3.2 Problem 2

Determine whether the point 2 = 0 isan ordinary point or regular point of the differential
eguation
zy” +sin(z)y + 2%y =0

Solution: Comparing with the normalized equation we get

p(r) = % andy(r) =«

Sincep(z) andq(z) both are analytic at = 0, the pointz = 0 is an ordinary point. This
example shows that singular point does not always occureni@r) = 0.
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37.3.3 Problem 3

Discuss the singular points of the differential equation

?(x — 2)%y" + (x — 2)y' + 3%y = 0.

Solution: Clearly the function
1
T )
Is not analytic at- = 0 andx = 2. Also the function
3
e %
1= G=2p)

IS not analytic at- = 2. Hence both: = 0 andz = 2 are singular point of the differential
equations. At: = 0 we have

32

and 22q(x) = CEDE

1
P0) = Gle—2))

Note thatz?¢(z) is non-singular at = 0 but zp(z) is not analytic at this point. Hence
x = 01is an irregular singular point. At = 2 we have

(¢~ 2)p(0) =  and (v — 2)2g(z) =2

Both functions are analytic at= 2 and hence = 2 is a regular singular point.

37.4 Brief Overview of Power Series

A power series about a poing is a series of the form

[ee]
Z cn(T — x0)"
n=>0

wherez is a variable and,, are constants, called coefficients of the series. There are
three possibilities about the convergence of a power seftes series may converge only
atz = 0 or it may converge for all values af. If this is not the case then a definite
positive number exists such that the given series converges for emeryzy| < R and
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diverges for everyr — 4| > R. Such a number is known as the radius of convergence and
lzo — R, o + R|, the interval of convergence, of the given series.

Among several formulas for determining convergence of thgr series, ratio test is
most common and simple to use. Given a power Serigs, ¢, (z — )" we compute

Cn+1
Cn

Y

then the series is convergence for x| < R and divergeniz — zo| > R.

37.4.1 Example

Determine the radius of convergence of the power series

R (z+1)"
sy

n=1

Solution: Ratio test gives
n2" 1
(n+1)2n+1| 2
Hence the radius of convergence of the power seri@&s=s2 and the interval of conver-
gence is-3 < x < 1. The convergence at the end points- —3 andx = 1 needs to be

checked separately.

lim =
n—oo

37.5 Power Series Solution near Ordinary Point

Let the given equation be

y" +p(x)y +q(x)y =0 (37.5)

If z = z¢ is an ordinary point of (37.5), then (37.5) has two non-aiNinearly indepen-
dent power series solutions of the form

oo

> Cula — xo)" (37.6)

n=0

and these power series converge in some interval of conveege— x¢| < R, (WwhereRr
is the radius of convergence of (37.6)) about
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To find series solutions we suppose that we have a seriesespation,

o0

y=>Y Cnlx—x)" (37.7)

n=0
and then to find out coefficient$, we need to differentiate (37.7) and plug in the deriva-
tives into the Equation (37.6). Once we have the appropcegdficients, we call (37.7)
the series solution to (37.5) near z,. More precisely, differentiating twice, the Equa-
tion (37.7) yields

o0

Y =) nCu(z—10)"" and y" = n(n—1)Cp(x — x9)" > (37.8)
n=0 n=0

Substituting the above values@fy’ andy” in (37.5), we obtain
Ap + Al(x — .TJ()) + AQ({L’ — xQ)Q +...+ An(l’ — l’())n +...=0, (379)

where the coefficientd,, A1, A, . . . etc. are now some functions of the coefficietgsC,, Cs, . ..
etc. Since the Equation (37.9) is an identity, all the codfits Ay, A1, A, ... of (37.9)
must be zero, i.e.,

Ag=0,41=0,A5=0,..., A, =0 (37.10)

Solving Equation (37.10), we obtain the coefficients of {34n terms ofCy and C;.
Substituting these coefficients in (37.7), we obtain theiiregl series solution of (37.5)
in power of(x — xp).

Suggested Readings

Boyce, W.E. and DiPrima, R.C. (2001). Elementary Differ@riEquations and Boundary
Value Problems. Seventh Edition, John Willey & Sons, In@ywN\ork.

Raisinghania, M.D. (2009). Advanced Differential Equato Twelfth Edition. S. Chand
& Company Ltd., New Delhi.

Grewal, B.S. (2007). Higher Engineering Mathematics. Emmth Edition. Khanna
Publishilers, New Delhi.

Edwards, C.H., Penney, D.E. (2007). Elementary Diffesdriiquations with Boundary
Value Problems. Sixth Edition. Pearson Higher Ed, USA.
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L esson 38

Series Solution about an Ordinary Point (Cont.)

In the last lesson we have discussed series solution of tmedgeneous differential equa-
tions. In this lesson we demonstrate the method by using ple@f basic examples. For
demonstration we take first example of a differential equmatvith constant coefficients
and then some more involved examples will be discussed.

38.1 Example Problems

38.1.1 Problem 1

Determine a series solution to 3y — y = 0.

Solution: Suppose that the series solution is of the form

o
y(x) = Z CnTn
n=0

Differentiatingy, we have

oo

y/({L’) = Z nepan—1 and y”(x) = Z n(n - 1)Cnxn—2
n=1

n=2
Substituting these into the differential equation, we have

o0

oo
Z n(n —1)cpxn—g — Z cnn =0

n=2 n=0
Re-indexing the first sum

o0

o0
Z(n +2)(n + 1)cpsomy — Z cntp =0

n=0 n=0

This implies

o0

Z [(n + 2)(” + 1)Cn+2 - Cnxn] T, =0

n=0
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Since the series is always equabtthen each coefficient must be zero. Thus we have
(n+2)(n+1)cpo —cpn =0 (38.1)

This can be rewritten in the form of recurrence relation as

Cngo = (n—|—2§7(ln—l— 5 (38.2)
Puttingn =0,1,2..., we get
co c1 Co C1
02257 03257 04257 05257
In general, we have
<0 A fork=1,2,....

kT gy T op

Putting these values into the series and collectinggl@dc; terms we get

,1'2 l.Qk’ 1'3 $2k+1
= 1+ —=+...+ < & — 4.+ ..
y(x) co( tortt 2h)! 4 ) +c (x+ a0 +...+ 2k 1] + )

This can be further rewritten in summation form as

o x2k S l’2k+1
ylz) = Cokzzo @R ; 2k 1 1)!

This is the desired series solution. It should be noted thiatderies solution can be
rewritten into the form of well known solutiof(x) = ¢ e® +¢2¢~* of the given differential
equation as

2 2
X xXr
cre’ + et =1 (1+x+§+...)+62 <1—x+§+...>

This can be rewritten as
23’2 23’3
cre” + e " = (¢ +C2) <1+§ +) + (¢1 —¢2) (x+§ +)

Denoting(c; + &) =: ¢p and(¢; — ¢2) =: c; we get

Z’2k S l’2k+1
2 4 kz_o 2k 1 1)

00
cre’ + et = ¢ E
k=0

This proves that both representations are equivalent.
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38.1.2 Problem 2

Find the series solution, about = = 0, of the equation (1 — z)%y” — 2y = 0 in powers of .

Solution: Sincez = 0 is an ordinary point and we can therefore get two linearlepeh-
dent solution by substituting

Y= Z cnx”.
n=0
After substitution we get
o0 o0
(1 -2z + 2?) Z n(n — 1),z 2 -2 Z '’ =0,
n=2 n=0
which leads to
(o] (o] o0 o0
Z n(n —1)c,a™ 2 -2 Z n(n — 1),z + Z n(n —1)ca™ — 2 Z '’ =0
n=2 n=2 n=2 n=0

In order to write the series in terms the coefficients’ofve shift the summation index as

o0 o0 oo o0
Z(n +2)(n+ 1)cpqaz™ — 2 Z n(n+ 1)epr12” + Z n(n —1)epa™ — 2 Z " =0
n=0 n=1 n=2 n=0

The sum in second and third series can also start from 0 wittt@anging the series. This
leads to

Z [(n+2)(n+ Depyo —2n(n+ 1)ept1 +n(n — ey — 2¢,] 2" =0

n=0
This can be further simplified as

o0

> (n+1)[(n+2)ensa — 2ncni1 + (0 — 2)ey] 2™ =0
n=0

Equating the coefficients we obtain the recurrence relation
(n+ 2)cpt2 — 2ncp41 + (n — 2)c, = 0.
Puttingn =0,1,2,... we get
co =g, C3= §(2co—i—cl) =i¢c, ey =c, c5=cC...
Hence the series solution becomes

o0
Y :co+01x+c()x2+ch”.

n=3
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38.1.3 Problem 3

Find the power series solution of the equation (22 + 1)y” + 2y’ — 2y = 0 in powers of z
(i.e. about = = 0).

Solution: Clearlyz = 0 is an ordinary point of the given differential equation. Téfere,
to find the series solution, we take power series

o0
y=co+car—+ca?+ezad .. = chx”. (38.3)
n=0

Differentiating twice in succession, (38.3) gives

o0

y = Z ne,z™ !t oand " = Z n(n — 1),z 2 (38.4)
n=1

n=1
Putting the above value gfy’ andy” in the given differential equation, we obtain

o0 o o0

(22 + 1) Z n(n—1)ea" 24z Z nepx -z Z nepx” =0
n=>2 n=1 n=0

o o o o
= Z n(n — 1)ca™ + Z il — T A Z nepr’ — Z ezt =0

n=2 n=2 n=1 n=0

This leads to

oo oo o o
Z n(n —1)epa™ + Z(n +2)(n+ 1)cpqaz™ + Z nepx” — Z cn—12" =0
n=2 n=0 n=1 n=1

Finally we have the identity

o0
2c9 + (6cz +¢1 — o)z + Z[n(n — Dep+ (n+2)(n+ 1)epso + ney — cp—1]a™ = 0.

n=2
Equating the constant term and the coefficients of variougep®ofz, we get
co =0, 6c3+C1 —cop =050 thatcs = (co—c1)/6

and the recurrence relation

Cp—1 — n26n
n—+1)(n+2)

, forall n > 2. (38.5)
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Puttingn =2in (38.5),64 = (1/12)61, asce = 0.
Puttingn = 3 in (38.5),¢5 = (9203) =—3(co— 1)

Putting the above values ef, c3, ¢4, cs, . . . ets. in (38.3), we have

ych+clx+02x2+03x3+04x4+05x5+...oo

= y=co+cax+(1/6)(co—c1)a® + (1/12)era* — (3/40)(co — ¢1)a” + ... 00
This can be rewritten as

1 3 1 1 3
ych(1+6x3—4—0x5+...)+cl<x—6x3+12x +4—0x5 ..),

which is the required solution near= 0, wherecy andc; are arbitrary constants.

38.1.4 Problem 4
Find the power series solution of the initial value problem zy” + 3/ + 2y = 0, y(1) = 1,
y'(1) = 2 in powersof (z — 1).

Solution: Sincez = 1 is an ordinary point of the given differential equation, wedfi
series solution

y=>Y calz—1)" = o = ney(z =1)""Fandy” =" n(n= ey (z ~1)""* (38.6)
n=0 n=1 n=2

Substitutingy andy’ in the given differential equation we obtain

[(z —1)+1] Zn(n — Dep(z — 1) 2+ chn(x g 22 cpz—1)"=0
n=2 n=1 n=0
This leads to
Z n(n—1)cp(z—1)""1 +Z n(n—1)cp(z—1)""2 +Z neg(z—1)""142 Z cn(zx—1)"=0
n=2 n=2 n=1 n=0

Shifting summation index of the first three terms we get

o0 oo
D n(n+Denri(@— 1"+ [(n+1)(n+2)cnya + (n+ Dens1 + 2]z — 1)" =0
n=1 n=0
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Equating the coefficients to zero we get

c1 + cp

2c04+c1+cg=0 = c9g=— 5

1)2 2
(n+1D%n i1 + @ foralln>1
(n+1)(n+2)

Using initial conditions in Equation (38.6) we ggt= 1 andc¢; = 2. Using these values
we obtain

Cn42 = —

2 1 1
— C4 = —— 5 = —, ...
37 4 67 5 157

Putting these constants in series we get the desired solio

co=—2, c3=

y=1+2(x—1)—2(x—1)* 4 (2/3)(x — 1) = (1/6)(z — D + (1/15)(z — 1)° + ...
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Module 3: Ordinary Differential Equations

L esson 39

Series Solutions about a Regular Singular Point

39.1 Introduction

In this lesson we discuss series solution about a singulat.plm particular, the power
series method discussed in last lessons will be generalizeglgeneralized power series
method is also known as Frobenius method.

Let us consider a simple first order differential equatiogf — y = 0 and try to apply the
power series method discussed in the last lessons. Note thatis a singular point. If
we plug in

(0.

k

y=>_ a”
k=0

into the given differential equation, we obtain

o o0
Q=22 2ol A= 00 (Z k:akxk_1> — (Z akxk>
k=0

k=1

o0
=ap + 2(2/{;% —ay,)z”.
k=1

First,ap = 0. Next, the only way to solve = 2ka;, — a, = (2k — 1) ap for k =1,2,3,... IS
for a;, = 0 for all k. Therefore we only get the trivial solution= 0. We need a nonzero
solution to get the general solution.

39.2 Frobenius Method

Consider the differential equation of the fogf+ p(x)y’ + ¢(z)y = 0. Note thatzp(z) and
x%q(z) are analytic at = 0. We try a series solution of the from

o0
y=a" chx" = 2" (co+ c1x + ez + ...), wherecg # 0
n=0
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The derivative of; with respect tac are given by

o0
y/ _ Z(n + ’I“)Cn[L'TH_T_l
n=0
oo
y" = Z(n +7)(n 41— 1),z 2
n=0

Also, we can write power series correspondingitr) andz?¢(x) as

xp(x) = Zanx” and 22¢(z) = Z bna™
n=0 n=0

The given differential equation can be rewritten as

2
rp\xr xXr A
y// p( )y/ qg )
“ il xXr

y=0

Substituting all values of, v/, y”, xzp(z) and z?q(x) series into the above differential
equation we get

o0 oo oo

o0 o0
Z(n+r)(n+r— 1)cnx"+r_2—|—z anz" 1 x Z(n+r)cnx"+r—1 —|—Z bz 2 X Z enx™ =0
n=0

n=0 n=0 n=0 n=0
Multiplying by =2 we get

oo

o o0 00 5
Z(H—FT)(TL—FT‘ — 1)Cnxn+r + Zanl’n « Z(n+r)cnxn+r pry anl,n % chxn-i—r —0

n=0 n=0 n=0 n=0 n=0

We can now equate coefficients of various powers tif zero to form a system of equa-
tions involving unknown coefficients,. Equating the coefficient af” we obtain

[7“(7’ - 1) + agr + bO]CO =0
Sincec, # 0, we obtain
2

r“ 4 (ap—1)r+bp=0 (39.1)

The above quadratic equation is known asitidicial equationof the given differential
equation. The general solution of the given differentialapn depends on the roots of
the indicial equation. There are three possible generakcas
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39.2.1 Casel: Theindicial equation has two real roots which do not differ by an
integer

Let r, andry are the roots of the indicial equation. Then the two lineanependent
solution will follow from

oo
yi1(x) = 2" Z 2 ya(x) = 2™ Zénz”
n=0 n=0

wherecy, c1, ... are coefficients corresponding to= r; andcy,ci,... are coefficients
corresponding te = r,. The general solution will be of the formn= ay; + by2, wherea
andp are arbitrary coefficients.

39.2.2 Casell: Theindicial equation hasa doubled root

If the indicial equation has a doubled regthen we find one solution

ypr=a"y apat
k=0
and then obtain another solution by plugging

o0
Yo =" Z bpz® + (In )y,
k=0

into the given equation and solving for the constapis

39.2.3 Caselll: Theindicial equation hastwo real roots which differ by an integer

If the indicial equation has two real roots such that r, is an integer, then one solution
IS

0
y1 =2y apal,
k=0

and the second linearly independent solution is of the form

o0
Yo = 2" Z bpx® + C(Inz)y;,
k=0

where we plugy, into the given equation and solve for the constap@sndC.
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Remark 1. Note that the case-l also includes complex numbers becaubati case
r1 — ro Will be a complex number which cannot be equal to a real intege

Remark 2: Note that the mai idea is to find at least one Frobenius-typetisn. |f
we are lucky and find two, we are done. If we only get one, weraiike the ideas above
or the method of variation of parameters to obtain a secoridt®mn.

39.3 Working Rules

Now we summarize the working steps of the Frobenius method:

1. We seek a Frobenius-type solution of the farm ) ~aza™*".
k=0

2. We plug thisgy into the given differential equation.

3. The obtained series must be zero. Setting the first caaitiGusually the coefficient
of ") in the series to zero we obtain tiedicial equation which is a quadratic
polynomial inr.

4. If the indicial equation has two real rootsandr, such that; — r» is not an integer,
then find two linearly independent solutions according te€zha

5. If the indicial equation has a doubled rogtor the indicial equation has two real
roots such that; — r, is'an integer then follow Case-Il or Case-lll accordingly.

39.3.1 Example

Find the power series solutions abatt 0 of

day” + 2y +y =0

Solution: Clearly,> = 0is a regular singular point. Comparing wifh+p(z)y'+q(z)y = 0
we haverp(z) = 1/2 andz?q(z) = z/4. We substitute Frobenius series

y=a" Z ez (39.2)
n=0
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into the differential equation to get

o0 o0 o0

1 1
Z(" +r)(n+7r— 1z + % Z(n + ) epz™TTT 4 o Z cax™t =0

n=0 n=0 n=0

Multiplying by z? we obtain

oo o0 o0

1 1
Z(n +7)(n+r— 1)z + = Z(n +7)epa™ T 4 = Z ™ = (39.3)
n=0 2 n=0 4 n=>0

Equating coefficients of” to zero and noting, # 0 we obtain indicial equation
(r—1)+2r=0
r(r 27" =

which has roots = 1/2,0. These roots are unequal and do not differ by an integer. To
obtain the recurrence relation, we equate to zero the cieffiof 2" in Equation (39.3)
and obtain

1 1
m+r)(n+r—1)cy + §(n+r)cn + 101 = 0

Corresponding te = 1/2 we get

Cp—1 N (—1)”

4n? + 2 =0 = cp=—r—1— = —C075
(4" + 2n)en + na T T on@2n+ 1) = 000 1 1)

Substituting these values in (39.2), we get one solution as

= (=0 z)3 2)° ,
y1200ﬁ;)ﬁx :Co(\/g—(\é_!) —0—(\/57‘) —|—...>:sm\/5

To obtain the second solution we use 0 to get

Cn— -1
(4n2—2n)cn+cn_1:0 = Cn:—Wl—l) = Cn:< )

Hence the second solution is
o0
Y2 = o Z z" = cos(v/z)
n=0
The general solution is given as

y = beos(v/z) + beos(v/z)

wherea andb are arbitrary constants.

317 5 www.AgriMoon.Com



Series Solutions about a Regular Singular Point
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Module 3: Ordinary Differential Equations

L esson 40

Series Solutionsabout a Regular Singular Point (Cont...)

In this lesson we continue series solution about a singuiigut p\We shall demonstrate the
method with some useful differential equations.

40.1 Example Problems

40.1.1 Problem 1

Find one series solution of the differential equation

4x?y" — 42y’ + (1 — 2x)y = 0,

Solution: Note thatr = 0 is a singular point. Let us try

o0 o0
= Z apx”® = Z apztT,
k=0 k=0

wherer is a real number, not necessarily an integer. Again if sudiien exists, it may
only exist for positiver. Firstlet us find the derivatives

(k‘ —l—?“) akl,k:—&-r—l7

Qd\
I
WE

B
I
o

1

(k+7)(k+r—1)apztt 2,

e

it
[en)

Plugging into our equation we obtain

(©.9] o o
42(1@ +7) (k4r—1)apzh™ — 4Z(k + ) apa™ T 4 (1 — 22) Z apz™T =0
k=0 k=0 k=0

Splitting the last series into two series we get

o o (©.9] (©.9]
Z Ak +7)(k+r—1)apat" — Z Ak + 1) apa®t 4 Z apxt T —2 Z apzF T =0
k=0 k=0 k=0 k=0
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Re-indexing leads to

o0 o0
24 (k+7)( k+r—1)akxk+r—z4(k‘—l—r—1)ak 1xk+r+2akx
k=0 k=1 k=0

Combining different series into one series

Z Qak 11’ =0

(4r(r —1) + aO‘l‘Z( (k+7)( k:+7“—1)+1)ak.—(4(k—l—r—1)+2)ak_1)xk’+r.

The indicial equation is given by

dr(r—1)+1=0

It has a double root at= 3. All other coefficients of:**" also have to be zero so

(4k+r)(k+r—1)+1)ap— (4(k+7r—1)+2) ap_1 = 0.

If we plug inr = § and solve fow,,, we get

4k +3—1)+2
Ak+3)(k+3-1)+1

1
ap = k-1 = 7 k-1

Let us setig = 1. Then

1 1 1
a1 = —ag =1, &22—&1=§>
1 1 1 1
aa = —q9 = —— asL = —Qaa =
3= 302 9 4= 4B = ey

In general, we notice that

aj = = .

k(k—1)(k—2)---3-2 K

In other words,

o
1
y = Zakka o LR/2 ‘/_Z _x _
k=0

k=0

So we have one solution of the given differential equatioareHve have written the series

in terms of elementary functions. However this is not alwagssible.
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40.1.2 Problem 2

Solve theBessel's equationf orderp.
22y’ +ay' + (22 — p*) y = 0. (40.1)

where2p is not an integer.

Solution: We take the following generalized power series

y=> ez c #£0. (40.2)
m=0
which implies
y/ _ Z Cm(]{?+m)l'k+m_1, y// _ Z cm(k+m)(l€+m . 1)xk+m—2
m=0 m=0

Substitution fory, ¢/, v” in (40.2) gives

z? i em(k+m)(k+m—1Daktm=2 4o i em(k +m)zFTm=L 4 (22 — n?) i et ™ =0
m=0 m=0 m=0
Combining the first two series we obatin
i cm{(k +m)(k+m—1)+ (k+m) —pz}xk+m + i emxt T2 =
m=0 m=0
Further simplifications leads to
i em(k+m+p)(k+m — p)a*t™ + i Cma™ T = (40.3)

Equating the smallest power oo zero, we get the indicial equation as

colk+p)k—p) =0, ie, (k+p)(k—p) =0, as cg#0.

So the roots of indicial equation ake= p, —p. Next equating to zero the coefficient of
zF*1in (40.3) gives

ci(k+14+p)k+1—p)=0, sothat ¢; =0 for k=p and — p.
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Finally equating to zero the coefficient &ft™ in (40.3) gives

cm(k+m+p)(k+m—p)+cp_2=0

1
:> m: m—2-
¢ (k:+m+p)(10—k—m)C 2

1
= 2. 40.4
- (k:+m+p)(10—k—m)C 2 (40.4)

Puttingm = 3,5,7,...in (40.4) and using; = 0, we find
01203205207:...:0.

Puttingm = 2,4,6,...1in (40.4), we find

1
(k+2+p)(p—k—2

(S )Co

1 1
G+atp)p—k—D2 " ktd+pp—k—-)E+2+pp—Fk—-2)"

Cq4 =

and so on. Putting these values in (40.2) and also replagibg 1, we get

:L’2 1’4
= |1
! [ RSP E)

+(k+4+p)(p—k—4)(k:+2+p)(p—k—2)+"'

Replacingk by p and—p in the above equation gives

2

k 2k
-1
N (-1)*x

y1 = 2P {1—4(1+p) } :xp;)Qkak[(k+p)(k—1+p)'--(2+p)(1+p)

x2 (—1)kx2k

yo = 7P {1_m+...] :x_pkz_oQ?kk!(k—p)(k‘—l_p)"'(2_p)(1_p)

Therefore wherzp is not an integer, we have the general solution to Besseliatean of
orderp
y = ayi(z) + coya (),

wherec; andc; are arbitrary constants.
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Remark: We define the Bessel functions of the first kind Bessel funofithe first
kind of orderp and —p as

1 & (- 2\ 2kt
(@) = 21 +p) 7t~ kz_o KD(k+p+1) (5) ’

_ 1 IR VA
J—p<x)_2_pf(1—p)y2_§k‘!l—‘( “p+1) (E) '

As these are constant multiples of the solutions we foundeglteese are both solutions to
Bessel's equation of order Whery is not an integer/, and.J_, are linearly independent.
When2p is an integer we obtain

X (=% a2kt
PO )

In this case it turns out that
Jp(x) = (=1)"J_p(2),

and so in that case we do not obtain a second linearly indepetsblution.

40.1.3 Problem 3

Find one series solution afy” + ¢/ + y = 0.

Solution: The indicial equation is
r(r—1)+r:r2:O.
This equation has only one root= 0. The recursion equation is
(n+ T)zan = —ap_1, n>1.

The solution withag = 1 iS

1

) = ) R T o )

Settingr = 0 gives the solution

Y1 = nz_o(_l)n (,:')2
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Module-1V: Vector Calculus

Lesson 41
Introduction

41.1 Introduction to Vector Calculus

We first introduce scalar and vector functions and some basic notation and terminology related to
these.

41.1.1 Scalar Function

A scalar function f(x,y, z) is a function defined at each point in a certain domain D in space. It
takes real values. It depends on the specific point P(x,y, z) in space, but not on any particular
coordinate system which may be used. For every point (x,y,z) € D, f takes a real value. We
say the a scalar field fis defined inD. For example, The distance function in the three
dimensional space taken as the Euclidean distance between the points P(x,y,z) and

Py (%0, Y0,20)

fP)=f(x,y,2) = (x = x0)* + (V — ¥0)* + (z — 20)*

defines a scalar field.

41.1.2 Vector function

A vector function is defined at each point P € D in three dimensional space by
V =V (P)=vji+V,j+Vk

and we say that a vector field is defined in D. In Cartesian system of coordinates, it can be
written as

V=v(x,y,2)i +vy(x,y,2)j + v3(x,y, 2)k.
An example of a vector field is the velocity field V' (P) defined at any point P on a rotating body.
41.1.3 Level surface

Let f(x,y,z) be a single valued continuous scalar function defined at every point P € D. Then
an equation of a surface is defined by f(x,y,z) = c, a constant. It is called a level surface of the
function.

41.1.4 Example : We determine the level surface of the scalar field in space, defined by the
following function f(x,y,z2)=x+y+Z
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We find that f(x,y,z) = c gives X+ y+z=c which is equation of a plane. For different cthey
define parallel planes. Therefore, the level surfaces are parallel planes.

41.1.5 Example: Determine the level surface of the scalar field in space, defined by the
function f(x,y,z)=x*+9y* +16z°.

Note that f(x,y,z)=c gives x*+9y®+16z° = c which defines ellipsoids. So the level surfaces
are ellipsoids.

41.2 Parametric Representation of Vector Functions

In this section we introduce the parametric representation of vector functions.
41.2.1 Parametric representation of curves

The parametric representation of a curve C in the two dimensional Cartesian plane is given by
x=x(t), y=y(t), a<t<h. Using this the position vector of a point P on the curve C can be

writtenas r(t)=x(t)i+y() j.

Therefore, the position vector of a point on a curve defines a vector function. Similarly a three
dimensional curve or a space curve or a space curve C can be parameterized as

r() =x@®)i+yt)j+zOk a<t<bh
41.2.2 Parametric Form of a Straight Line

The parametric form of a line passing through a point with position vector a and with the
direction of vector b is given by

r(t) = a+th = (a; + thy)i + (a; + thy)j + (az + thy)k

41.2.3 Parametric Form of a Circle

The parametric form of the circle x? + y? = a?

, is defined by
r(t) = acosti+ asintj
41.2.4 Parametric Form of an Ellipse

The parametric form of the ellipse
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is given by

r(t) =acosti+ b sintj

41.2.5 Parametric Form of a Parabola:

Let us consider the parabola y? = 4ax. Now take y = t as one parameter and then we can write
the parametric form of the parabola as

2
r(t) = (i—a) i+
41.2.6 Parametric Representation of Surfaces

We can give parametric representation of surfaces can be done using two parameters. Let
f(x,y,z) = c or g(x,y,z) = 0 be the equation of a surface. Let an explicit representation of the
surface be written as z = h(x,y). Then, if we substitute u = x, y = v, the parametric form of
the surface can be reduced to

r(u,v) = ui + vj + h(u, v)k.
41.2.7 Example
The parametric representation of the cylinder x? +y? = a? is
r(u,v) =acosui+asinuj+ vk.
41.2.8 Example
The parametric representation of the sphere  x? + y? + z? = a? is given by
r(u,v) =acosucosvi+asinucosvj+asinvk, 0<u<2m —n/2<v<mn/2

41.2.9 Example

The parametric representation of the ellipsoid

IS given by

r(u,v) =acos ucosvi+bsinu cosvj+csinvk
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41.3 Limit, Continuity and Differentiability of Vector Function

In this section the analytical concepts of the limit, continuity and differentiability of vector
function are introduced.

41.3.1 Limit of Vector Function

The vector function v(t) is said to have the limit p as t — [if v(t) is defined in some
neighbourhood of |, except possibly at t = [, and

lim,,; |[v(t) —p| =0

We write p. In the Cartesian system, this implies that limits of the component functions
v1(t), v,(t) and v3(t) existas t - [ and

lim,_,; v, () = py, lim;,; v, () = py, lim,,; v3(¢) = p3
where p =pi+pj+ p3k.
41.3.2 Continuity
A vector function v(t) is defined to be continuous at t = [, if

(i) v(t) is defined in some neighbourhood of |, (ii)lim,_,; v(t) exists, and (iii)lim,_,; v(t) =

v(0).

In Cartesian system, this implies that v(t)is continuous at t = [, if and only if the component
functions v (t), v, (t) and v (t) are continuous at t = L.

41.3.3 Differentiability

A vector function v(t) is said to be differentiable at a point, if the limit

. v(t+At)—v(t
lim ( )—v(t)
At—0 At

exists. If the limit exists, then we write it as v'(t) or as ‘;—:.

In Cartesian system, this implies that the component functions vy (t),v,(t) and vs(t) are
differentiable at a point t, and the limits

lim v; (t+AL)—v;(t)

,i = 1,2,3 exist.
At—0 At

Therefore, v'(t) = v, ()i + v, (t)j +v3 ()k

Let v(t) =r(t) = x(t)i + y(t)j + z(t)k be the parametric representation of a curve C.
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dr ooy dx(®) . dy(®) . | dz()
Then dt—r(t)— =+ k.
41.3.4 Example

Let us consider the represent of the parabola y =1 — 2x?,—1 < x < 1 in parametric form.
Using this we will find r'(0) and r'(%).

Assume x=sint. Then y = 1 — 2sin®t = cos2t, The range of tis —% <t< % So

r(t) = sint i + cos2t j, —

N

<t<?Z
2
Therefore r'(t) = cost i — 2sin2tj ,

Further, r'(0) = i,r'(%) = (ﬁ) — 2j. The tangent at t = 0 is parallel to x-axis.

It may be noted that t = 0 gives x = 0, y = 1 which is the vertex of the parabola.
41.3.5 Example

We find the tangent vector to the curve with parametric representation given by

x = t3,y=%,z= t2+1, atthepoint t = 2.

We will also find the parametric representation of the tangent vector.

First note that the position vector of a point on the given curve is
rt)=t L+(1+?)]+(t + Dk, t # 0.

Therefore the tangent vector is

r)=3t2i—=j+2tk

t2

and r'(2) = 12i — 5 j + 4k .
The position vector of the point at which r'(2) is the tangent is 7(2) = 8i + %j + 5k.

Therefore we require the position vector of a point on the line passing through the point whose
position vector is r(2) and has the direction of r'(2). Hence, parametric form of the line is given
by

x=8+12t,y =

N W

z=5+4torr'(t) =(83,5) +t(12,-1,4).

IS
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41.3.6 Higher Order Derivatives and Rules of Differentiation
Assuming that the existence of derivatives, we have the following results
v'(t) = v (Oi+ v, (O] +v3" Ok
u+v) =u+v
(F®u®) = fOu) + fF(Ou')
where f(t) is any real valued scalar function.
u(®).v()) = u(®).v'(t) + u'(t).v(t)
(u(t) x v(t)) = u(t) x v'(t) +u'(t) x v(t)

where . and x represent the dot and cross products, respectively. It must be mentioned that the
cross product of two vectors is not commutative.

41.3.7 Example
Find v'(t) in each of the following cases.
(D v(t) = (cost + t2)(ti +j + 2k) (i) v(t) = (3ti + 5t%j + 6k). (t%i — 2tj + tk)
Solution
(i) v'(t) = (cost+t?) (ti +j + 2k) + (cost + t?)(ti + j + 2k)’
= (—sint + 2t)(ti + j + 2k) + (cost + t2) (i)

= (3t% + tsint + cos t )i + (2t — sint)(j + 2k)

(ii) v'(t) = (3ti + 5t%j + 6k). (t%i — 2tj + tk) + (3ti + 5t%j + 6k). (t%i —
2tj + tk)’

= (3i + 10t j)(t%i + 2tj + tk) + (3ti + 5t%j + 6k). (2ti — 2j + k)
=6—21t?
41.3.8 Length of a Space Curve

Let the curve C represented in parametric form as r = r(t),a < t < b. In Cartesian system, we
have r(t) = x(t)i + y(t)j + z(t)k. Then, the length of the curve is given by
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b 2 N2 N2 b /
=[x @) + (@) + (F©) 12de = [ oo
We observe that the integrand is the norm of r'(¢), that is

2 2 2
I @I =[(x®) +(®) +(Z®) 1
Then, we can write
b '
L= [, llr®ldt
Sometimes the notation |r'(t)] is also used instead of ||r'(¢)]].

Now, define the real valued function s(t) as

s = [1(x®) +('©) +(Z®) 172 ds = [ I @l g (#13.)

Then, s(t) is the arc length of the curve from its initial point (x(a),y(a),z(a)) to an arbitrary
point (x(t),y(t),z(t)) on the curve C. Therefore, s(t) is the length function. Using relation
(41.3.1), it is possible to solve for t as a function of s, that is t = s(t). Then the curve C can be
parameterised in terms of the arc length s as

r(s) =r(t(s)) = x(t(s))i + y(t(s))j + z(t(s))k
41.3.9 Example
We try to find the length of the Helix which is given by
r(t) =acosti+asintj+ctk,a>00<t<2m.
First note that we can write

x(t)=acost, y(t)=asint, z(t)=ct.

Hence x'(t) = —asint,y'(t) = acost,z =c.

Therefore , we have

2n

s = arc length = [~ [a*sin®t + a*cos®t + ¢*]'/?dt = (2m)(a® + ¢*)!/?
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Module-IV: Vector Calculus

Lesson 42
Gradient and Directional Derivative

42.1 Gradient of a Scalar Field

Let f(x,y,z) be a real valued function defining a scalar field. To define the gradient of a scalar
field, we first introduce a vector operator called del operator denoted by V. We define the vector
differential operator in two and three dimensions as

R P R R
V—la+}5 and V—Lax+]ay+kaz
The gradient of a scalar field f(x, y, z), denoted by Vf or grad (f) is defined as

o

_ o
Vf_lax+]6y+kaz

Note that the del operator V operates on a scalar field and produces a vector field.

42.1. 1 Example

Find the gradient of the following scalar fields

() f(x,y) = y* —4xy at(1,2),

Solution
fal A\ : .
Vi(x,y) = (l =Y 5) (r® —4xy) = 4y i + (2y — 4x)j
42.1. 2 Example
r =xi +yj + zk,|r| = r and # = r/r, then show that grad(%) = —#/r2.

Solution

) - (7 +2) ()= (-25) 5 (-5 5) + (- 5) = - o

o)

where 7 = (xi + yj + zk)/r
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42.1. 3 Geometrical Representation of the Gradient

Let f(P) = f(x,y,z) be a differentiable scalar field. Let f(x,y,z) = k be a level surface and
Py (x0, Vo, 29) be a point on it. There are infinite number of smooth curves on the surface passing
through the point P,. Each of these curves has a tangent at P,. The totality of these tangent lines
form a tangent plane to the surface at a point P,. A vector normal to this plane at P, is called the
normal vector to the surface at this point.

Consider now a smooth curve C on the surface passing through a point P on the surface. Let
x =x(t),y = y(t), z = z(t) be the parametric representation of the curve C. Any point P on C
has the position vector r(t) = x(t)i + y(t)j + z(t)k. Since the curve lies on the surface, we
have

flx(@),y(),z(t) =k

Then f(x(t) y(t),z(t)) =0

. of dx |, of dy | 0f dz _
By chain rule, we have ==+ 252k + 2220 = 0

or (B2 ) (5 4+ 48) B0
orVE.r'(t) =0

Let V£(P) # 0and r'(t) # 0. Now r'(t) is a tangent to C at the point P and lies in the tangent
plane to the surface at . Hence Vf(P) is orthogonal to every tangent vector at P. Therefore,
Vf(P) isthe vector normal to the surface f(x,y,z) =k at the point P.

42.1. 4 Example
We will find a unit normal vector to the surface xy? + 2yz = 8 at the point (3, —2,1).
Let f(x,y,2z) = xy? + 2yz = 8 then

af—y, —2xy+22and 2y

Therefore
Vf—l +]a +k -=y 2i + (2xy + 22)j + 2yk

At (3,—2,1), we obtain the normal vector as Vf(3,—2,1) = 4i — 10j — 4k. The unit normal
vector at (3,—2,1) is given by

4i-10j—4k _ 2i-5j—2k
V16+100+16 33
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42.1. 5 Example

Here we will find the angle between the two surfaces xlog z = y?> — 1 and x?y = 2 — z at the
given point (1,1,1).

First note that the angle between two surfaces at a common point is the angle between their
normals at that point. Now we have

filx,y,2) = xlogz—y*+1=0,Af(x,y,2z) = (logz)i — 2yj + (x/2)k
Af(1L11) =-2j+k=mn
f0Gy,2) =x*y—2+2z=0, Afy(x,y,2) = 2xyi + x%j + k
AL(LLD) =2i+j+k=mn,

1
V30

ni.ny _

Therefore cos8 =
[nqllnzl

or@ = cos™! (%)

42.1.6 Properties of Gradient

Let f and g be any two differentiable scalar fields. The gradient satidfies the following algebraic
properties,

A(f +9) =Af +Ag
Aleif + cp9) = c1Af + c;Ag, where ¢y, ¢, are arbitrary constants
A(fg) = fAg + gAf

A (5 ) _ gAfg—Zf Ag

42.2 Directional Derivative

Let f(P) = f(x,y, z) be a differentiable scalar field.

Then % %% denotes the rates of change of f in the direction of x, y and z axis, respectively.
9f of of
ox’ ay ’ oz
the slopes of the tangent lines in the directions of i,j, k respectively. It is natural to give the
definition of derivative in any direction which we call as the directional derivative.

If f(x,vy,z) =k isthe level surface and P, is any point, then at Py(xg, ¥o, Z9) denote

Let b = byi + b,j + b3k be any unit vector. Let P, be any point Py: a = ayi + a,j + ask.

Then, the position vector of any point Q on the line passing through P, and in the direction of b
IS given by
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r=a+th=(a; +th)i+ (ay + thy)j + (az + th3)k = x(t)i + y(t)j + z(t)k

This is, the point Q(a; + tby,a, + tby, az + th3) is on this line. Now, the vector formthe point
P, to Q is given by tb. Since | b|=1, the distance from P, to Q is t. Then

of _ 1. f@-f®)
6_1_‘ - 11rnt—)O ¢

if it exists, is called the directional derivative of f at the point P, in the direction to b .
Therefore aa_t fx(t),y(t),z(t)) is rate of change of f with respect to the distance t.

We have

of _ of dx | df dy |, of dz
at  odx dt = dy dt = 0z dt

where

dx dy dz

o 7 are evaluatedatt = 0 .

We write

of _ (;0f 4 ;Of L Of (;dx  ody | g dz) _ godr
6_t_(l6x+]6y+kaz)'(ldt+]dt+kdt)_vf'dt

But 3—: = b(a unit vector). Therefore, the directional derivative of f in the direction of b in given
by
Directional derivative =Vf. b = grad(f). b,

which is denoted by D, (f). Note that b is a unit vector. If the direction is specified by a vector
u, then b = u/|u|.

42.2.1 Example

We will determine the directional derivative of f(x,y,z) = xy? + 4xyz + z> at the point
(1,2,3) in the direction of 3i + 4j — 5k.

Consider
Vf = (y? + 4yz)i + 2xy + 4xz)j + (4xy + 22)k.

At the point (1,2,3), we have Vf = 28i + 16j + 14k. The unit vector in the given direction is
b = (3i + 4j — 5k)/5V2.

Therefore
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D,(1,2,3) = Sl—ﬁ(z&' + 16j + 14k). (3i + 4j — 5k) = %
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Module-IV: Vector Calculus

Lesson 43
Divergence and Curl

43.1 Divergence of a Vector Field
Letv =vi(x,y,2)i + v,(x,y,2)j + v3(x,y, z)k define a vector field.
We define the divergence of vector field as below:

Divergence of v, denoted bi div v, is defined as the scalar

- 6v1 avz c’)v3
Vv=—+—4+—
d 0x + dy 0z

: .9, .0 d . .
Alsodivv =V.v = (la+]£+k£).(vll+v2]+v3k) =2, v, 0

43.1.1 Example
Here we will find the divergence of the vector field v = (x?y? — z3)i + 2xyzj + e®? k.

Note that we have
div v =i(x2 273 +i(2x Z) +i(exyz)
0x Y dy Y 0z

xyz

= 2xy? + 2xz + xye
43.2 Curl of a Vector Field v

Curl of a vector field v, denoted by curl v, is defined as the vector field

_aﬁ_aﬂ)- ("ﬂ_aﬁ) (6&_6&)
Curlv_(@y 0z L+ 0z Ox J+ 0x dy k

Curl v can also be written in terms of the gradient operator as
i j k
Culv=vxv= |2 2 Z2f
ox dy 0z
V1 V2 V3
43.2.1 Example
Find the curl of the vector field v = (x?y? — z3)i + 2xyzj + e™%k

Solution
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i ik
9 E 9
Curlv = ™ I P
x2y? —z3 2xyz eY*

= i(xze™? — 2xy) — j(yze™? — 3z%) + k(2yz — 2x%y)
43.2.2 Curl of Gradient

Let f be a differentiable vector field. Then

Curl(gradf)=00orVx Vf =0
Proof : From the definition, we have

[
a
VX Vf = |ox
of

0x Eaz

(o*f o*f\, . (0°f 9f o*f  0*f
=1 - +j - +k - =0
dydz 0dyoz 0x0z 0x0z dxdy 0x0y

43.2.3 Divergence of Curl

2L~
|2 R =

Let v be a differentiable vector field. Then
div(curl v)=00rV.(Vxv) =0

proof. Form the definition, we have for v = vyi + v,j + v3k
(i D) (2 e g (P _9u iy (2 0w
V'(fo)_(l6x+]6y+kaz)'[(6y 6z)l+(6z 6x)]+(6x )k]

dy
d /0v v a (0v v 0 (0v ov
( 3 2) + ( 1 3) ( 2 1) —0

ax\ay 0z) T ay\az ox) oz

dx  dy
43.2.4 Example

Prove that div(fv)= f (div v)+grad(f). v, where f is scalar function

Solution

V.(F0) = (ig- +Jigm + k). (Fori + foa) + fo3k) = 5= (Fo1) + 2 (f02) + 2 (fv3)
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avq 6172 dvg i i
—f( y+ )+(U1L+U2]+U3k)( ]6y+kt’)z)

=f(V.v) +v.(Vf) = f(V.v) + Vf.v
43.2.5 Example
If r=xi+yj+zk,|r| = r, show that div (r/r3)=0

Solution
Jd (x
A.(Tr)=(l—+]—+k )(ir"—3+jry—3+kri3)=z§(73)

3 3

_ ( ar or 6r>
3 ax yay 0z
Since 1?2 = x2+y? + z2
3
Therefore,  A. (L) ==—-==0

43.2.6 Example

Prove the following identities

(i) curl (fv) =(gradf)x v + fcurl v

L a2

(i) div(grad £)=V?f where V= ¥4 + + — Is the Laplacian operator

(iii) curl(curlv)= V(V.v) — V?v or grad(div v) = V. X (V X v) + V2.
where f is a scalar function.

Solution

() curl (fv) = VX (fv) =V x (foni + foa) + fosk) = Zh= (Fvs) = 3= (fv2)]

=G -5) i+ (G -5+ G -S) vy —we) i+

dy
a a a
(5 =)y + (w5 —w5))
:f(CurI v)+(l%+]%+k;—z)x (v1i+v2j+173k)

= f(curl v) + (grad f)x v
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_ (.0 . .0 a\ (.of . .of f\ _ (3%f | 0*f | 9%\ _ o2
(i) divigrad f)= (157 + 57 + k) (150455 + k) = (S + 55+ 55) = v

(iii) grad(div v)= V x (V X v) = (z lai) X [Z i (6_3 _ 6_2)]

dy 0z

_z_[a (6172 6171) 9] (6171 avg)]
B lay dx  0dy 0z\ 0z 0x

B ) - (52

E 0x dy 0z 9x2 dy dz?2

= (Zi%) (V.v) — (%+i+%) QX ivy)

dy?

=V(V.v) — V?v
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Module-IV: Vector Calculus

Lesson 44
Line Integral

44.1 Introduction
Let C be a simple curve. Let the parametric representation of C be written as

x=xt),y=y(t),z=2(t), a<t<b (44.1.1)
Therefore, the position vector of appoint on the curve C can be written as

r@®)=x@®)i+y@t)j+z@)k,a<t<b (44.1.2)

44.2 Line Integral with Respect to Arc Length

Let C be a simple smooth curve whose parametric representation is given as Egs.(1) and (2).
Let f(x,y,z) be continuous on C. Then, we define the line integral f of over C with respect
to the arc length s by

[, feoy,2)ds = [ fx(®),y(0), 2OW O +y (©)F + 2 (©)7 dt

since

o= 0= [+ () + (&)

44.2.1 Example

Evaluate fC (x% + yz)ds, where C 'is the curve defined by x = 4y,z = 3 form (2,%, 3) to
(4,1,3).

Solution

Let x =t. Then, y = t/4 and z = 3. Therefore, the curve C represented by

x=ty=-,z=3,2<t<3.

t
Zr

We have ds = /17 /4.

2 _ V17 (4(,2 3 _ 13917
Hence [, (x? +yz)ds = [ (t2 +3t)dt = =

44.2.2 Line Integral of Vector Fields

Let C be a smooth curve whose parametric representation is given in Egs. (44.1.1) and
(44.1.2). Let
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Line Integral

v(x,v,z) =v1(x,y,2)i + v,(x,y,2)j + v3(x,y,2)k

be a vector field that is continuous on C. Then, the line integral of v over C is defined by
Jo v.dr = [, vidx +v,dy + v3dz
d
= J. v(x(®),y(®),z(®)) .é dt (44.2.1)
If v=v;(x,v,2)i, then Eq.( 44.2.1) reduces to

Jo vidr=[. vidx = [, vy (x(®),y(t), 2(t)) Z—:dt

Similarly, if v =v,(x,y,2)j or v =v3(x,y, 2)k, we respectively obtained
d
Jo vedr= [, vodx = [, vy(x(®),y(t), 2(t)) %dt

and fC V. dr = fC ‘U3 dx = fC Ug(x(t); }/(t): Z(t)) ‘(ii_)t,dt
44.2.2 Example

Evaluate the line integral of v = xyi + y?j + e?k over the curve C whose parametric
representation is given by x = t2,y = 2t,0 <t < 1.

Solution:

The position vector of any point on C is given by r = t%i + 2tj + tk. We have
d 1 . . . !
Je v.é dt = [, (2t3i + 4t%j + etk). (2ti + 2j + k)dt
1 37
= [, (4t* +8t> +eNdt =-+e
44.2.3 Example
Evaluate the integral [ (x* + yz)dz, where C isgivenby x = t,y = t*z=3t,1 <t < 2.
Solution:
2 163
We have [ (x* +yz)dz =2 [[(t* +3t>) dt = e

44.3 Line Integral of Scalar Fields

Let C be a smooth curve whose parametric representation is as given in Egs. (44.1.1) and
(44.1.2). Let f(x,v,2), g(x,y,2z) and h(x,y,z)be scalar fields which are continuous at
point over C. Then, we define a line integral as

Jo floy 2)dx + g(x,y,2)dy + h(x,y,2z)dz
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=J; [f(x(t), y(t), 2()) Z—f +g(x(@®),y(@®), z(®)) i—f +h(x(t),y(0),z(t)) Z_j] dr

If C is closed curve, then we usually write
Jo vodr=4¢, v.dr
44.3.1 Example
Evaluate [ (x +y)dx — x*dy + (y + z)dz ,where Cisx* =4y, z=x, 0 <t <2

Solution

2
First we consider parametric formof Casx =t,y = %,z =2, 0<t<2

Therefore,

2 t2 t t2 10
Jo Gk +y)dx —x*dy + (y + 2)dz = | [(t+ T) — t? (E) + (T-I_t)] dt = —
44.4 Application of Line Integrals
In this section, we consider some physical applications of the concept of line integral.

44.4.1 Work Done By A Force

Let v(x,y,2) =vi(x,y,2)i + v,(x,y,2)j + v3(x,y,2)k be a vector function defined and
continuous at every point on C. Then the line integral of tangential component of v along the
curve C from a point P to the point Q is given by

fPQv.dr = [, v.dr = [ vidx +v,dy +v3dz

Let now v = F, a variable force acting on a particle which moves along a curve C. Then, the
work W done by the force F in displacing the particle from the point P to the point P along
the curve C is given by

W= [lF.dr=[.F.dr

where C* is the part ofC , whose initial and terminal point are P and Q.

Suppose that Fis a conservative vector field . Then F can be written as F = grad(f), where f
is a scalar potential(field). Then, the work done

W=[.F.dr=[.grad(f).dr
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i d 9 Q
= [ (Grdx +50dy +50dz) = [ df = [f(x,y,2)]3
44.4.1 Example

Find the work done by the force F = —xyi + y?j + zk in moving a particle over the circular
pathx? + y? = 4,z = 0 form (2,0,0) to (0,2,0).

Solution
The parametric representation of the given curve is x = 2cott,y = 2sint,z=0, 0 <t <
72 . Therefore, work done /#/is given by
— — 2
W =[.F.dr=[, —xydx+y*dy+zdz

m/2 16
f [—4sintcost (—=2sint) + 4 sin® t(2cos) | dt = 3
0

44.4.2 Circulation

A line integral of a vector field v around a simple closed curve C is defined as the
circulation of v around C.

E . dr
Circulation = ¢, v.dr = ¢, v.—ds =¢ v.Tds,

where T is the tangent vector to C. For example, in fluid mechanics, let v represents the
velocity field of a fluid and C be a closed curve in its domain. Then, circulation gives the
amount by which the fluid tends to turn the curve rotating or circulating around C. If

gﬁc v.Tds > 0 then the fluid tends to rotate Cin the anti-clockwise direction, while if
gﬁc v.Tds < 0, then the fluid tends to rotate C in the clockwise direction perpendicular toT

at every point on C, then 99C v.Tds = 0, that is the curve does not move at all.
44.5 Line Integral Independent of the Path
Let ¢ (x, y, z) be a differentiable scalar function. The differential of ¢ (x, y, z) is defined as
— 9 9 L
do = ™ dx + 7y dy + Py dz =grad ¢.dr

Therefore, a differential expression expre d¢ = f(x,y,z)dx + g(x,y,z)dy + h(x,y,z)dz is
an exact differential, if there exists a scalar function ¢ (x, y, z) such that

dop = f(x,y,z2)dx + g(x,y,z)dy + h(x,y,z)dz.

We now present the result on the independence of the path of a line integral
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44.5.1 Theorem

Let C be a curve in simply connected domain D in space. Let f,g and h be continuous

function having continuous first partial derivatives in D. Then fC fdx + gdy + hdz is
independent of path C if and only if the integrand is exact differential in D.

44.5.2 Example

xdx +ydy .

Nz
origin. Find the value of the integral from the point P(—1,2) to the point Q(2,3).

Show that f is independent of path of integration which does not pass through the

Solution

We havef(x,y)=JxeTy2 and g(x,y) = 2—+y

NOW% = —xy/(x* +y%)3/? and Z—i = —xy/(x* + y?)3/2

of

Since = a—f , the integral is independent of any path of integration which does not pass

through the origin. Also, the integrand is an exact differential. Therefore, there exists a
function ¢ (x, y) such that

Z_fzf(xry)zmand _g(x Y)_

2+y

Integrating the first equation with respect to x, we get ¢(x,y) = \/x% + y? + h(y).
Yy b Yy
VxZHy? T x4yl

Hence ¢ (x,y) = /x2 +y2 + k
d. +d 2,3 2,3
Therefore, [, == yy [ED AT+ YD) =[x + y? 17 = V13 =45

(12)

uting in 22 = dh o dh _ _
Substituting in P + i or 2y = 0 or h(y) = k, constant.

Suggested Readings

Courant, R. and John, F. (1989), Introduction to Calculus and Analysis, Vol. I, Springer-
Verlag, New York.

Jain, R.K. and lyengar, S.R.K. (2002) Advanced Engineering Mathematics, Narosa
Publishing House, New Delhi.

Jordan, D.W. and Smith, P. (2002) Mathematical Techniques, Oxford University Press,
Oxford.
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Kreyszig, E. (1999) Advanced Engineering Mathematics, John Wiley, New York.
Piskunov, N. (1974) Differentail and Integral Calculus, Vol. Il, MIR Publishers, Moscow.

Wylie, C. R. and Barrett, L.C. (2003) Advanced Engineering Mathematics, Tata McGraw-
Hill, New Delhi.
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Module-IV: Vector Calculus

Lesson 45
Green’s Theorem in the Plane
45.1 Introduction

The theorem provides a relationship between a double integral over a region and the line
integral over the closed curve C bounding R. Green’s theorem is also called the first
fundamental theorem of integral vector calculus.

45.2 The Main Result
45.2.1 Theorem: (Green’s theorem)

Let C be a piecewise smooth simple closed curve bounding a region R. If f, g, of /dy,dg / ox
are continuous on R, then

'[f(x y)dx+g(x, y)dy = H[——%)d dy

The integration being carried in the positive direction (counter clockwise direction) of C.
Proof: We shall prove Green’s theorem for a particular case of the region R.

Let the region R be simultaneously expressed in the following forms.
R:u(x)<y<u,(x),a<x<b
R:iv (X)<x<v,(x), c<y<d

We obtain

2 (Y)
I3 % gy - I{j aXolx}oly [l90(). )= 9 (), vy

c| v(x)

T 90u). v+ 90452, )y - fiotx, y)cy

the integration being carried in the counter clockwise direction.

We obtain

jjﬂdxdyzi uT)ﬂdy dy:i[f(x u, (X)) — f (x, Uy (X)) Jdx
R OX oy ) ) y Uy

al u(x)

= i f(x,u,(x))dx +T g(x,u,(x))dx = —<j> f(x, y)dx
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Green’s Theorem in the Plane

the integration being carried in the counter clockwise direction. Therefore

l f(x,y)dx+g(x,y)dy= Lj(g—i—%jdxdy .

45.2.2 Example : Evaluate
J.(x2 +y2)dx + (y + 2x)dy, where C is the boundary of the region in the first quadrant that is
C

bounded by the curves y* =x and x* =y.

Solution: The curves intersect at (0,0) and (1,1). The bounding curve is C. We have
f(x,y)=x*+y® and g(x,y)=Yy+2X.

Using the Green’s theorem, we obtain
J.(x2 +y?)dx+ (y +2x)dy = J-J. (2—2y)dxdy
C R

\/gdx
X

5

(2-2y)dydx = [ (2y—y*)]

1N}

Ot O
=<

(2Jx = x—2x% + x")dx =11/30

45.2.3 Example: Find the work done by the force F =(x*-y®)i+(x+Yy)j in moving a

particle along the closed path C containing the curves x+y=0,x*+y* =16 and y = X in the
first and fourth quadrants.

Solution: The work done by the force is given by

W= W :cﬁF.dr :cﬁ(xz—y3)dx+(x+ y)dy.
C C

The closed path C bounds the region R. Using the Green’s theorem, we obtain

j (X% = y3)dx + (X + y)dy = j j (1+3y?)dxdy.

It is convenient to use polar coordinates to evaluate the integral. The region R is given by
R:x=rcosd,y=rsin0,0<r<4,-x/4<0< /4.

Therefore,
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Green’s Theorem in the Plane

zld 4 zld [ 2 3
”(1+3y )dxdy = J' .[(1+3r sin® @)rdrd@ = J' {—+4r sin H}Ode

-zl4 0 —l4
rl4 7l4
= j (8+192sin2 0)d6 = j [8+96(1—cos 26)]d6
—-rl4 —rl4

. rl4
= 201040 -48sin20] " =527 96,

45.2.4 Example: Verify the Green’s theorem for f(x,y)=e*siny,g(x,y)=e*cosyand C
is the square with vertices at (0,0), (7/2,0), (n/2,7/2), (0,7/2).

Solution: We can write the line integral as

cf fdx+gdy{g5+g$+¢+j }(fdx+gdy)

¢ C C C

where C,,C,,C, and C,are the boundary lines. We have along C,:y=0,0<x<r/2 and

j e *(sin ydx + cos ydy) =0,

oY
along C,:x=7/2,0<y<7z/2 and

72

J'e’x(sin ydx +cos ydy) = .[ e
c, 0

72 7!/2

cosydy =e
along C,:y=7/2,7/2<x<0 and

J'e (sin ydx +cos ydy) = Ie “dx =e ™ —1,

Cs 72

along C,:x=0,7/2<y<0 and

Ie (sin ydx + cos ydy) = J. cos ydy =—1

2

Therefore,

7l2 72

ch fdx + gdy = j j (—2e™* cos y)dxdy = j j (—2e7* cos ydxdy) = 2(e 2 -1).
C R 0 0

45.2.5 Example: Now we use the Green’s theorem to show that
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Green’s Theorem in the Plane
IZ—Eds = ”Vzudxdy,
C R
where V?is the Laplace operator 6° / ox* +0° / &y* and n is the unit outward normal to C.
Solution:
Let the position vector of a point on C, in terms of the arc length r(s) = x(s)i + y(s) j.

Then, the tangent vector to C is given by

dr dx. dy.
=—=—i+—]
ds ds ds

and the normal vector n is given by (since nT =0)

Note that n is the unit normal vector. Now

a—uds = Vu.nds
f on

since ou/onis the directional derivative of u in the direction of n. Therefore, using Green’s
theorem, we obtain

a_udsz 8_u@_8_u% ds=¢ _8_udx+a_udy
= on OX 0s 0Oy 0S s\ oy OX

_ ”(a_“Jr_]dxdy j [ v2udxdy.

Suggested Readings
Courant, R. and John, F. (1989), Introduction to Calculus and Analysis, Vol. I, Springer-
Verlag, New York.

Jain, R.K. and lyengar, S.R.K. (2002) Advanced Engineering Mathematics, Narosa
Publishing House, New Delhi.

Jordan, D.W. and Smith, P. (2002) Mathematical Techniques, Oxford University Press,
Oxford.
Kreyszig, E. (1999) Advanced Engineering Mathematics, John Wiley, New York.
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Piskunov, N. (1974) Differentail and Integral Calculus, Vol. Il, MIR Publishers, Moscow.

Wylie, C. R. and Barrett, L.C. (2003) Advanced Engineering Mathematics, Tata McGraw-
Hill, New Delhi.
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Module-IV: Vector Calculus

Lesson 46
Surface Integral

46.1 Introduction

b
The double and triple integrals are the generalizations of the definite integral I f (x)dx to two

and three dimensions respectively. The surface area integral is a generalization of the arc
length integral

i 1+ (y')?dx.

a

We shall now present a generalization of the line integral jf(x, y)dsto three dimensions.
C

This generalization is called the surface integral.

Let g(x,y,z)be a given function defined in the three dimensional space and let S be surface
which is the graph of a function z= f(x,y), or y=h/(x,z), or x=h(y,z). We assume that
(1) g(x,y,z) is continuous at all points on S, (i) S is smooth and bounded and (iii) the

projection R of the surface S on x-y plane, x-z plane, or y-z plane respectively expressed in
the forms as assumed in the proof of the Green’s theorem. For example, the projection R on
the x-y plane can be expressed in the forms

R:u(x)<y<u,(x),a<x<b
or Rivy(x)<x<v,(x),c<y<d.

The surface integral can be defined in a similar way as the double integral is defined.

Subdivide S into n parts S,,S,,...,S, of areas AA,AA,,...,AA,. The projection R of S is
therefore partitioned into n rectangles R,R,,..,R,. We choose an arbitrary point

ETRANY

P.(X.YZ) on each element of the surface area S,and form the sum
I =2, 9(X, Vi, Z)AA,.
k=1

Let n— oo, such that the largest element of the surface area shrinks to a point. This implies
that as n — o ,the length of the longest diagonal of the projected rectangles tends to zero. In
the limit as n — oo, the sequence {I} has a limiting value which is independent of the way S

is subdivided and the choice of B, on S, . This limiting value is called the surface integral of
g(x,y,z) overS.

That is, we define the surface integral as
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LIQ(X, y,z)dA= Ingg(xk, Yo Z)AA .

where | d |is the length of the longest diagonal of the projected rectangles.

The surface integral can be evaluated in any of the following ways.
() Let S be represented in parametric form as r =r(u,v). Then we can write

H g(x,y,z)dA= ” alx(u,v), y(u,v), z(u,v)]| r, xr, | dudv

= [[ olx(u,v), y(u.v), 2(u, ) = (r, 1,)*] dudv

where R’is the region corresponding to S in the u-v plane.

(i) Let S be represented in the form z = f (x,y). Then we can write
Hg(x, y,2)dA= [[alx.h(x,2), Z][1+ f,> + f,°]"*dxdy
S R

where R is the orthogonal projection of S on the x-y plane.

(i)  Let S be represented in the form x =h,(y,z). Then we can write

[[o0xy,2)dA= [[alh(y, 2), y,2][1+ (h),” + (h,)?, 1V dxdz

where R is the orthogonal projection of S on the x-z plane.

(iv)  Let S be represented in the form x =h(y, z). Then we can write
[[o(xy.2)dA= [[ alh(y,2), y. 2][L+h +h,’]"* dydz
S R

where R is the orthogonal projection of S on the y-z plane.

If S is piecewise smooth and consists of the surfaces S,,S,,...,S,, then

” g(x,y,z)dA :H g(x,y, z)dA+” g(x,y, z)dA+...+H g(x,y,z)dA.

S S,
We now present some of the important applications of the surface integrals.
46.2 Mass of a Surface

Let p(x,y,z)denote the density of a surface S at any point or mass per unit surface area.
Then, the mass m of the surface is given by
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m= Hp(x, y,2)dA.

46.3 Moment of Inertia

Let p(X,Y,z)denote the density of a surface S at any point. Then, the moment of inertia | of
the mass m with respect to a given axis | is defined by the surface integral

| = [ p(x,y, 2)ddA

where d is the distance of the point (x,y,z) from the reference axis I. If the surface is
homogeneous, then p(Xx,y,z)= constant and p(X,y,z)=m/A, where A is the surface area of

S. Then,
m
| :KJ'SJ'dZdA

46.3.1 Example: Find the mass of the surface of the cone z =2++/x* + y2,2 <z<7, in the
first octant, if the density p(X,y,z) at any point of the surface is proportional to its distance
from the x-y plane.

Solution: The density is given by po(X, Yy, z) =cz,cis constant. We have

2=f(X,y)=2+X°+y*, f = X = y
\/x2+y2 \/x2+y2

2

2
dA= 1+ f 2+ f “dxdy = \/1+ Xz’i it xzi 70y - J2dxdy.

The projection of S on the x-y plane is given by R: x*+ y® = 25, in the first quadrant.

Therefore, mass of the surface is given by
m= _”csz = J'J'c[2+\/x2 +y? W2dxdy
S R
= c\/EJ'J'[2+«/x2 + vy Jdxdy
R

Substituting x=rcosé,y =rsin8,0< 6 <z /2, we obtain
5 712 72 r3 5

m:c\/EJ' J' (2+r)rdrd9:c\/§j (r2+?) do
00 0 0

= cﬁ(25+ 1?}% = 100\/5 7C.

3
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46.3.2 Example: Evaluate the integral ” ydAwhere S is the portion of the cylinder
S
X =6 — y?in the first octant bounded by the planes x=0,y=0,z=0and z =S8.

Solution: The equation of the surface is in the form x =h(y,z). Here h(y,z)=6-y*and
g(x,y,z)=y. We have

hy =-2y,h, =0,(1+ hyz +h22)1/2 _ (1+4y2)1/2_

The projection of S on the y-z plane is the rectangle OABC with sides y =0,y =6,2=0
and z =8.Therefore,

H ydA:J.I y(L+4y?*)"?dydz :fj'y(1+ 4y?)"?dydz
S R 00

2\3/2 6
=8{w} =E[(25)3/2_1]:&.
8(3/2) 3 3

46.3.3 Example: Evaluate the surface integral [[F.ndA where F =6zi+6j+3yk and S is
S

the portion of the plane 2x+3y+4z =12, which is in the first octant.

Solution: Let f(x,y,z)=2x+3y+4z-12 =0 be the surface. Then

grad f=2i+3j+akn="909 _ 1 o 3. ak).
9

| gradf | /29

Consider the projection of S on the x-y plane. The projection of the portion of the plane ABC
in the first octant is the rectangle bounded by x =0,y =0and 2x+3y =12. We have

dA = dxdy  dxdy
nk 4/29°

Therefore, _” F.ndA= ”% (12z+18+12y)dA.
S S

From the equation of the surface, we get 4z =12 -2x—3y. Hence,
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1 1
ijF.ndAsz E(54—6x+3y)o|A=ZjRj(54—6x+3y)o|xo|y

6 [ 12-2x)/3 1 6
j { j (54—6x+3y)dy}dx =Ej(360—102x+7x2)dx
x=0 0

y=0

N

6
= 1[360x —51x? +Z xg} =138.
6 3 0

Suggested Readings

Courant, R. and John, F. (1989), Introduction to Calculus and Analysis, Vol. I, Springer-
Verlag, New York.

Jain, R.K. and lyengar, S.R.K. (2002) Advanced Engineering Mathematics, Narosa
Publishing House, New Delhi.

Jordan, D.W. and Smith, P. (2002) Mathematical Techniques, Oxford University Press,
Oxford.

Kreyszig, E. (1999) Advanced Engineering Mathematics, John Wiley, New York.
Piskunov, N. (1974) Differentail and Integral Calculus, Vol. Il, MIR Publishers, Moscow.

Wylie, C. R. and Barrett, L.C. (2003) Advanced Engineering Mathematics, Tata McGraw-
Hill, New Delhi.
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Module-IV: Vector Calculus

Lesson 47
Stokes’s Theorem
47.1 Introduction

Let C be a curve in two dimensions which is written in the parametric form r =r(s). Then,
the unit tangent vector to C is given by

Let v be written in the form v = gi - fj.

X ¢y

.o (X, dy .
Then vT =(gi— fj).| —i+—j |= .
(9 J)(ds " Jj ds ds

ds

By Green’s theorem , we have

v.dr = des gdx fdy = —+— dxdy = (V x V).kdxdy. \
ag

This result can be considered as a particular case of the Stokes’s theorem. Extension of the
Green’s theorem to three dimensions can be done under the following generalizations.

0] The closed curve C enclosing R in the plane — the closed curve C bounding an
open smooth orientable surface S (open two sided surface).

(i)  The unit normal nto C — the unit outward or inward normal n to S.

(iii)  Counter clockwise direction of C — the direction of C is governed by the direction
of the normal n to S. If n is taken as outward normal, then C is oriented as right
handed screw and if n is taken as inward normal, then C is oriented as left handed
SCrew.

47.2 The Main Result
We now state the Stokes’s theorem.

47.2.1 Theorem (Stokes’s Theorem): Let S be a piecewise smooth orient able surface
bounded by a  piecewise  smooth  simple  closed curve  C. Let

V(X,Y,2) =V, (X, Y, 2)i+V,(X,¥,2) J+Vs(X, ¥, z)k be a vector function which is continuous and

has continuous first order partial derivatives in a domain which contains S. If C is traversed
in the positive direction, then

(ﬁv.dr :45 (vT)ds= ” (V xv).ndA

where n is the unit normal to S in the direction o orientation of C.
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In terms of components of v we have

(ﬁ[vl(x, y,z2)dXx+Vv, (X, Yy, z)dy +v,(X, Y, z)dz] = J'J' (Vxv).ndA.

47.2.2 Remark: As in divergence theorem, the theorem holds if the given surface S can be
subdivided into finitely many special surfaces such that each of these surfaces can be
described in the required manner.

47.2.3 Remark: To prove the Stokes’s theorem, it is not necessary that the equation of the
surface should be simultaneously written in the forms z = f(x,y),y=g(X,z) and x=h(y, z)

. For example, if we take the question of the surface as z= f(x,y) and assume that f(Xx,y)
has continuous second order partial derivatives then the theorem can be easily proved.

47.2.4 Remark: (Physical interpretation of curl)

We know that in rigid body rotation, if v denotes the tangential (linear) velocity of a point on
it, then curl v represents the angular velocity of the uniformly rotating body. We also know
that a line integral of a vector field v around a simple closed curve C defines the circulation
of v around C. For example, if v denotes the velocity of a fluid, then circulation gives the
amount by which the fluid tends to turn the curve by rotating or circulating around C.
Therefore, circulation (line integral) is closely related to curl of the vector field. To see this,

let C. be a small circle with centre at P"(x",y",z"). Then, by Stokes’s theorem, we have

@v.dr = ﬂcurlv.ndA
C, S,

where S, is a small surface whose bounding curve is C, . Let P(X,y, z) be any arbitrary point

on C, . We approximate curlv(P) = curlv(P"). Then, we have
<j’>v.dr = ﬂ [curlv(P*)].n(P")dA =[curlv(P").n(P")] j j dA
C, S, S,

=[curlv(P").n(P )]A

where A s the surface area of §,.

r

Let the radius r of C, tend to zero. Then, the

approximation curlv(P) ~ curlv(P") becomes more accurate and in the limit as r — 0, we get
* * - 1
curlv(P").n(P") = lim-= v.dr.
r—0 Ar c

The left hand side of the above equation is the normal component of curl v. The right hand
side of equation is circulation of v per unit area. The left hand side is maximum when the

circle C, is positioned such that the normal to surface, n(P”) points in the same direction as
curlv(P").
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47.2.5 Remark: Stokes’s theorem states that the value of the surface integral is same for any
surface as long as the boundary curve, bounding the projection R on any coordinate plane, is
the same curve C. Hence, in the degenerate case, when S coincides with R, we can take n=k
or j or i depending on whether the projection is taken on the x-y plane or x-z plane or y-z
plane.

47.2.6 Example: Verify Stokes’s theorem for the vector fieldv = (3x — y)i — 2yz®j —2y°zk,,

where S is the surface of the sphere x* + y*+2> =16,z >0.

Solution: Consider projection of S on the x-y plane. The projection is the circular region
x* +y? <16,z =0 and the bounding curve C is the circle z =0, x* + y* =16.

We have

(I)V.dr = <j> (3x—y)dx —2yz*dy — 2y’zdz = cﬁ(Sx— y)dx
Cc C c

since z=0. Setting x =4cos#, y =4sin @, we obtain

3.

2r 2r
¢ (3x—y)dx = [ 4(3cos 6 —sin 6)(-4sin 6)do =16 | [Esm 29—%(1—003 20)}d¢9
C 0 0

= 16£1j 2r =167.
2

[ i k
Vxv=|0dlox dloy dloz|=i(-4yz+4yz)— j(0)+k(1) =k
3x—y -—2yz* -2y’z
Now,
Ne 2(Xi + yj + zk) :1

A (i Y+ k), (Vxv)n =
2 +y v 4 .

Therefore,

[ wpnoa= [ Ton= [0 = [ 270 = [y =167

which is the area of the circular region in the x-y plane. Hence, Stokes’s theorem is proved.
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472.7 Example: Evaluate §(2y°dx+xdy+zdz where C is the trace of the cone
C

intersected by the plane x=4 and S is the surface of the cone below z=4.

Solution: We have v =2y%i +x%j + zk and

ik
curlv=|0/ ox oloy o/aoz|=i(0)— j(O)+k(3x* —6Y?).
2y x° z

If the outward normal to S is taken, then it points downwards. Then, the orientation of C is
taken in the clockwise direction. Alternatively, if the inward normal to S is taken, then C is
oriented in the counter clockwise direction.

Let f(x,y,z)=+/x*+Yy*> -2z =0 be taken as the equation of the surface. Then, the normal and
unit normal are given by

Xi+ Yj _k=XI+yJ—Zk and & (xi+yj—zk)/z =X|+yj_2kexceptatthe

VX +Y? z JOC+y? +2%) 1 22 J2z

origin.

N =

We have H(va).ndA:H (3X 6y LV 6 i) H 3 —26y ) (_‘i’;‘i}’_)

since dxdy = (n.k)dA. Therefore, substituting X =rcosé, y =rsiné, we obtain

”(va) ndA = ”(3x —6y*)dxdy = II(3cos 0—6sin’ 9)r’drde

r=02r7

=—H[(1+003249) 2(1- cosZH)]rSdrdH——”(SCOSZH ~Dridrdé

027z 0271'

+14[ 3si 0
S L a7
21400 2 2r

The bounding curve C is given by x> +y®> =16,z =4. Now setting x =4c0sé,y =4siné,
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Stokes’s Theorem

qSZyde +x3dy +zdz = 95 2y3dx + x*dy
C C

0
= j 64[2sin® @(—4sin @) +cos® 8(4cos H)]

We obtain i . /2
=256 [ [cos* 60— 2sin* 010 = —1024 [ (cos* 6 - 2sin* 0
0 0

Hence, the theorem is verified.
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Module-IV: Vector Calculus

Lesson 48
Divergence Theorem of Gauss

48.1 Introduction

Let C be a curve in two dimensions which is written in the parametric formr =r(s). Then, the
unit tangent and unit normal vectors to C are given by
X i dy . dy. dx

j,n=—i——.

T=—I1+ ,
ds ds ds ds

Then,

fdx + gdy :( f %-{- gd—yjds =(gi- fj).(ﬂi il j)ds = (v.n)ds
ds ds ds ds

where v = gi— fj. Also

g 2t (12,50 Giof)-
x5y (|8X+Jay}(g| f)=V.v

Hence, Green’s theorem can be written in a vector form as

cﬁ(v.n)ds = _[ j (V.v)dxdy

The result is a particular case of the Gauss’s divergence theorem. Extension of the Greens’
theorem to three dimensions can be done under the following generalisations.

Q) A region R in the plane — a three dimensional solid D

(i) The closed curve C enclosing R in the plane — the closed surface S enclosing the
solid D

(iii)  The unit outer normal n to C — the unit outer normal n to S.

(iv)  Avector field v in the plane — a vector field v in the three dimensional space

(v) The line integral cj}(v.n)ds — a surface integral ”(v.n)dA
C S

(vi)  The double integral HV.VdXdy — a triple (volume) integral I”V.VdV.
R D
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48.2 The Main Result

The above generalizations give the following divergence theorem.

Theorem: (Divergence theorem of Gauss) Let D be a closed and bounded region in the three
dimensional space whose boundary is a piecewise smooth surface S that is oriented outward. Let
V(X,Y,2) =V, (X, Y, 2)i+V,(X,Y,2) j+V5(X, ¥, z)k be avector field for which v;,v, and v,are

continuous first order partial derivatives in some domain containing D. Then,
[[wnyda=[[[vvav = [[[div(v)dv
S D D

where n is the outer unit normal vector to S.

Remark: The given domain D can be subdivided into finitely many special regions such that each
region can be described in the required manner. In the proof of the divergence theorem, the
special region D has a vertical surface. This type of region is not required in the proof. The
region may have a vertical surface. For example, the region bounded by a sphere or an ellipsoid
has no vertical surface. The divergence theorem holds in all these cases. The divergence theorem
also holds for the region D bounded by two closed surfaces.

Remark: In terms of the components of v, divergence theorem can be written as
Hvldydz +V,dzdx + v,dxdy = J.J‘J- N +%+ i dxdydz

S o\ ox oy oz
or as

J;'[ (v,cosa +V, cos S +V,cosy)dA= IJD'_[(%+% +%J dxdydz .

oy
Example: Let D be the region bounded by the closed cylinder x*+y? =16,z=0 and z = 4.

Verify the divergence theorem if v =3x%i + 6y’ j + zk.

Solution: We have V.v =6x+12y+1. Therefore,
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Divergence Theorem of Gauss

m(VV)dV IL Jy j@(6x+12y+1)dydxdz

m (V)dV = j [ y_;;%(6x+12y+1)dydxdz,
Since X,y are odd functions, we obtain

v =@ j [ ayox=16 fx/16 X dx
:16[;x\/16 X +%sm [4)}3:6471

The surface consists of three parts, S, (top), S, (bottom) and S, (vertical),
On S :z=4,n=k

H (v.n)dA :ﬂ zdA = 4” dA =4 (area of circular region with radius 4)=64.
S, S, S

On §,:z2=0,n=-k.

H (v.n)dA== j —zdA=0.

2xi+2y] 1

ﬁ (X'+ yi)

H (v.n)dA== %J.J‘ (3% +6y°)dA.

On S,:x*+y?=16,n=

Using the cylindrical coordinates, we write x =4co0sé,y =4sin8,dA =4dadz.

Therefore,

jj (vn)dA== j j [192 cos’6 + 348sin® 9]4d 9dz

20190

=192 j [(cos36 +3c0s 6) + 2(3sin 6 —sin 36)]
0
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Hence, [[(vn)dA= [[[(Vv)dv.

Green’s Identities (formulas)

Divergence theorem can be used to prove some important identities, called Green’s identities
which are of use in solving partial differential equations. Let f and g be scalar functions which
are continuous and have continuous partial derivatives in some region of the three dimensional
space. Let S be a piecewise smooth surface bounding a domain D in this region. Let the
functions f and g be such that v=f grad g Then, we have

V.(fVg) = fV?g+Vf.Vg

By divergence theorem, we obtain

H(v.n)dA:ﬁ f(Vg.n)dA:m'V.(ng)dV
m(fvzg +Vf.Vg)dV.

Now, Vg.n is the directional derivative of g in the direction of the unit normal vector n.
Therefore, it can be denoted by og / on. We have the Green’s first identity as

ﬁf(Vg.n)dAzﬂfa—gdAzﬂj(gvzf +Vg.Vi)dV.

S S an D

Interchanging f and g, we obtain

jjg(Vf n)dA = ﬂf—dA_ﬂj(gvzf +Vg.V)dV.
D

Subtracting the two results, we obtain the Green’s second identity as

jj(ng gVf).ndA = M ——gﬂjdAzm(fvzg—gvzf)dv.

Let f=1. Then, we obtain
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Divergence Theorem of Gauss

[[vg.nda- Lf%dA: f[v"oav.

S

If g is a harmonic function, then Vg = 0and we have
[[vg.nda= [[Zda=o.
S J on

This equation gives a very important property of the solutions of Laplace equation, that is of
harmonic functions. It states that if g(x,y,z) is a harmonic function, that is, it is a solution of the

equation
2 2 2
o’y 3'g o'

+ =0
ox>  oy* oz’

Then, the integral of the normal derivative of g over any piecewise smooth closed orient able
surface is zero.
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